第18章小结与复习(第2课时)(一)本课目标1.会用待定系数法求一次函数、反比例函数的解析式.2.能利用一次函数、反比例函数的图象及其性质解决简单的实际问题.3.理解一次函数、一元一次方程及一元一次不等式之间的关系.(二)教学流程1.复习导入通常情况下,我们可以用什么方法求函数的解析式?一次函数、一元一次方程和一元一次不等式之间存在怎样的关系?利用函数的知识解决简单问题,你已经获得了哪些经验?2.课前热身交流上节课在“链接生活”与“实践活动”中所布置的内容.3.合作探究(1)整体感知本节课我们着重复习以下三个方面的知识:第一部分:一次函数(包括正比例函数)、反比例函数解析式的求法.第二部分:一次函数、一次方程和一次不等式之间的关系.第三部分:利用上述三个函数解决具体问题.(2)四边互动互动1师:利用多媒体演示幻灯片6.已知直线AB经过坐标系原点和点(1,-2)求:(1)把直线AB向下平移3个单位的直线CD的解析式;(2)把直线CD向左平移2个单位的直线EF的解析式;(3)直线EF关于x轴对称的直线GH的解析式.师:(点拨)把原点O(0,0)和A(1,-2)同时向下平移3个单位的对应点C、D的坐标分别是什么?把点C、D向左平移2个单位所得对应点E、F的坐标是什么?点E、F关于x轴对称的点G、H的坐标是什么?求直线的解析式需要知道直线上几点的坐标?生:在教师的点拨下,动手尝试,并相互交流解题思路和解题结果.明确求直线的解析式需要知道直线上两个不同点的坐标,然后用待定系数法求出直线的解析式.对于几何变换(直线的平移、旋转、对称)后的直线解析式的求法,首先要在原图形上找出两个点的坐标,再求出这两个点经过变换后的对应的两个点的坐标,然后应用待定系数法求变换后的直线的解析式.互动2师:利用多媒体演示幻灯片7.画出函数y=-2x+4的图象,并根据图象回答下列问题:(1)方程-2x+4=0的解是x=2;(2)不等式-2x+4≥0的解集是x≤2;(3)当-2≤y<2时,x的取值范围是10的解集,就是图象位于x轴上方部分对应的x取值范围;不等式kx+b<0的解集,就是图象位于x轴下方部分对应的x取值范围;由函数值y的取值范围确定自变量x的取值范围的方法是:首先在纵轴上找到的y取值区域,映射到图象上的对应区域,再在横轴上找到对应的映射区域,从而确定x的取值范围;由自变量x的取值范围确定函数值y的取值范围的方法雷同.互动3师:利用多媒体演示幻灯片8.春天是万物复苏的季节,同时也是疾病传播的猖獗时期.为了预防疾病,某学校对学生宿舍每周进行一次药熏消毒法进行消毒.已知药物燃烧时,室内每立方米空气中含药量y(毫克)与时间x(分钟)成正比例.药物燃烧后,y与x成反比例(如图所示).现测得药物8分钟燃烧完结,此时室内空气中每立方米含药量为6毫克.请根据题中提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为y=0.75x,自变量的取值范围是0≤x≤8;药物燃烧后,y关于x的函数关系式为;(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进宿舍,那么从消毒开始,至少需要经过30分钟后,学生才能回到宿舍.(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续的时间不低于10分钟时,才能有效杀死空气中的病毒,那么此次消毒是否有效?为什么?答案:含药量不低于3毫克的时长为12分钟,因此此次消毒有效.生:合作探究,并解答问题.师:逐个点击空格,验证学生解答的结果.明确师生共同归纳解题思路,解题策略,并利用多媒体展示解题的过程和结果.(1)由图象可知(燃烧过程中):线段AB经过坐标系原点,因此可设其解析式为y=kx,由于点A(8,6),在图象上,得k==0.75,所以线段AB解析式为y=0.75x.(2)由于燃烧后,y1与y2成反比,因此可设其解析式为y1=,因为点A(8,6)在双曲-线上,得k1=48,所以双曲线的解析式为y1=,当y1≤1.6时,≤1.6得x≥30,因此,学生在燃烧药物后30分钟,才能回到宿舍.(3)空气中每立方米的含药量不低于3毫克,包含两个过程,即药物燃烧过程和燃烧后含药量逐渐消失的过程,含药量...