第4讲万有引力定律及其应用知识点一开普勒行星运动定律1.开普勒第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个上.2.开普勒第二定律(面积定律)对每一个行星来说,它与太阳的连线在相等时间内扫过的相等.3.开普勒第三定律(周期定律)所有行星的轨道的的三次方跟它的的二次方的比值都相等.答案:1.焦点2.面积3.半长轴公转周期知识点二万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的成正比,与它们之间距离r的成反比.2.公式:F=G,其中G=N·m2/kg2,叫万有引力常量.3.适用条件公式适用于间的相互作用.当两个物体间的距离远远大于物体本身的大小时,物体可视为质点;r为两物体间的距离.答案:1.乘积二次方2.6.67×10-113.质点知识点三经典时空观和相对论时空观1.经典时空观(1)物体的质量不随速度的变化而变化.(2)同一过程的位移和对应的时间在所有参考系中测量结果.(3)适用条件:宏观物体、运动.2.相对论时空观同一过程的位移和对应时间在不同参考系中测量结果.答案:1.相同低速2.不同(1)所有行星绕太阳运行的轨道都是椭圆.()(2)行星在椭圆轨道上运行速率是变化的,离太阳越近,运行速率越小.()(3)德国天文学家开普勒在天文观测的基础上提出了行星运动的三条定律.()(4)只要知道两个物体的质量和两个物体之间的距离,就可以由F=G计算物体间的万有引力.()(5)地面上的物体所受地球的引力方向指向地心.()(6)两物体间的距离趋近于零时,万有引力趋近于无穷大.()答案:(1)√(2)(3)√(4)(5)√(6)考点开普勒行星运动定律的理解和应用1.行星绕太阳的运动通常按圆轨道处理,若按椭圆轨道处理,则利用其半长轴进行计算.2.开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.3.开普勒第三定律=k中,k值只与中心天体的质量有关,不同的中心天体k值不同.考向1对开普勒定律的理解[典例1]火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积[解析]由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A错误.火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误.根据开普勒第三定律(周期定律)可知,所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确.对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误.[答案]C考向2开普勒定律的应用[典例2](2016·新课标全国卷Ⅰ)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为()A.1hB.4hC.8hD.16h[解题指导]画出由三颗同步卫星实现赤道上任意两点保持通讯的示意图,由几何关系计算轨道半径,根据开普勒第三定律计算周期.[解析]设地球半径为R,画出仅用三颗地球同步卫星使地球赤道上任意两点之间保持无线电通讯时同步卫星的最小轨道半径示意图,如图所示.由图中几何关系可得,同步卫星的最小轨道半径r=2R.设地球自转周期的最小值为T,则由开普勒第三定律可得,=,解得T≈4h,选项B正确.[答案]B涉及椭圆轨道运动周期的问题,在中学物理中,常用开普勒第三定律求解.但该定律只能用在同一中心天体的两星体之间,如绕太阳运行的两行星之间或绕地球运行的两卫星之间,而对于一颗行星和一颗卫星比较时不能用开普勒第三定律,开普勒第三定律不仅适用于天体沿椭圆轨道运动,也适用于天体沿圆轨道运动.考点万有引力的计算及应用1.万有引力定律适用于计算质点间的引力,具体有以下三种情况:(1)两物体间的距离远远大于物体本身的线度,两物体可视为质点,例如行星绕太阳的旋转.(2)两个均匀的球体间,其距离为两球心的距离.(3)一个...