电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第24课时6.3.2方差与标准差VIP免费

第24课时6.3.2方差与标准差_第1页
第24课时6.3.2方差与标准差_第2页
第24课时6.3.2方差与标准差_第3页
第24课时方差与标准差【学习导航】学习要求1.体会方差与标准差也是对调查数据的一种简明的描述,要求熟练记忆公式,并能用于生产实际和科学实验中;2.体会方差与标准差对数据描述中的异同。【课堂互动】自学评价案例有甲乙两种钢筋现从中各抽取一个样本(如下表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.哪种钢筋的质量较好?【分析】在平均数相同的情况下,观察上述数据表,发现乙样本的最小值100低于甲样本的最小值110,最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.在平均数相同的情况下,比较两组数据的极差能大概判断它们的稳定程度.极差:我们把一组数据的最大值与最小值的差称为极差.从数据表上可以看出,乙的极差较大,数据较分散;甲的极差小,数据较集中,这就说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论.这时,我们考虑用更为精确的方法——方差.在上一课时中,学习了总体平均数的估计,其中提到平均数是“最理想”近似值的缘由.同样我们可以考虑每一抗拉强度与平均抗拉强度的离差,离差越小,稳定性就越高.那么,怎样来刻画一组数据的稳定程度呢?在上一课时中,设n个实验值(=1,2,…,n)的近似值为,那么它与这n个实验值(=1,2,…,n)的离差分别为,,…,.由于上述离差有正有负,故不宜直接相加.可以考虑将各个离差的绝对值相加,研究||+||+…+||取最小值时的值.但由于含绝对值,运算不太方便,所以考虑离差的平方和,即()2+()2+…+()2,当此和最小时,对应的的值作为近似值,因为()2+()2+…+()2=,所以当时离差的平方和最小,故可用作为表示这个物理量的理想近似值,称其为这n个数据,,…,的平均数或均值,一般记为.在上述过程中,可以发现,一组数据与其平均数的离差的平方和最小,考虑用与其平均数的离差的平方和来刻画一组数据的稳定程度是可行的.即本案例中,可用各次抗拉强度与平均抗拉强度的差的平方和表示.由于比较的两组数据的容量可能不同,因此应将上述平方和除以数据的个数,我们把由此所得的值称为这组数据的方差.因为方差与原始数据的单位不同,且平方后可能夸大了离差的程度,我们将方差开方后的值称为这组数据的标准差.标准差也可以刻画数据的稳定程度.一般地,设一组样本数据,其平均数为,则称为这个样本的方差,其算术平方根为样本的标准差,分别简称样本方差,样本标准差.根据上述方差计算公式可算得甲、乙两个样本的方差分别为50和165,故可认为甲种钢筋的质量好于乙种钢筋.【精典范例】例1甲、乙两种冬水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定:品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8【解】甲品种的样本平均数为10,样本方差为=0.02乙品种的样本平均数也为10,样本方差为甲110120130125120125135125135125乙115100125130115125125145125145=0.24例2为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换。已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差天数151~180181~210211~240241~270271~300301~330331~360361~390灯泡数1111820251672【分析】用每一区间内的组中值作为相应日光灯的使用寿命,再求平均寿命。【解】各组中值分别为165,195,225,255,285,315,345,375,由此算得平均数约为=267.9将各组中值对于此平均数求方差得=2128.60(天2)故标准差约为答:估计这种日光灯的平均使用寿命约为268天,标准差约为46天。例3(1)求下列各组数据的方差与标准差(结果精确到0.1):甲123456789乙111213141516171819丙102030405060708090丁35791113151719(2)比较计算结果,各组方差和标准差的关系是什么?【解】(1)甲:6.7,2.6;乙:6.7,2.6丙:666.7,25.8丁:26.7,5.2(2)乙的方差与标准差分别与甲的相同;丙的方差是甲的方差的100倍,标准差是甲的10倍;丁的方差是甲的方差的4倍,标准差是甲的2倍例4某市...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

雨丝书吧+ 关注
实名认证
内容提供者

乐于和他人分享知识,从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部