圆柱与圆锥基础知识汇总圆柱1.圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。圆柱也可以由长方形卷曲而得到。(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。其中,第一种方式得到的圆柱体体积较大。)2.圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的。3.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πR2b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4Rh4.圆柱的侧面展开图:a沿着高展开,展开图形是长方形,如果h=2πR,展开图形为正方形。b.不沿着高展开,展开图形是平行四边形或不规则图形。C.无论如何展开都得不到梯形5.圆柱的相关计算公式:a.底面积:S底=πR2b.底面周长:C=πd=2πRc.侧面积:S侧=2πRhd.表面积:S=2S底+S侧=2πR2+2πRhe体积:V=πR2h考试常见题型:a已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长b已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积c已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积d已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积e已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。二.圆锥1.圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。2.圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3.圆柱的切割:a.横切:切面是圆b.竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S增=2Rh6:圆锥的相关计算公式a.底面积:S底=πR2b.底面周长:C=πd=2πRc体积:V=πR2h/3考试常见题型:a已知圆锥的底面积和高,求体积,底面周长b已知圆锥的底面周长和高,求圆锥的体积,底面积c已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。三、圆柱和圆锥的关系1.圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。2.圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。3.圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。4.圆柱与圆锥等底等高,体积相差SH2/3。题型总结1、直接利用公式:分析清楚求的的是表面积,侧面积还是底面积以及体积半径变化导致底面周长,侧面积,底面积,体积的变化。两个圆柱(或两个圆锥)半径,底面积,底面周长,侧面积,表面积,体积之比。2、圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)3、横截面的问题4、浸水体积问题(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体。等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3.六上第四单元圆圆心:圆中心一点叫做圆心。用字母“O”来表示。半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。※圆心确定圆的位置,※半径确定圆的大小。1.在同一个圆内,所有的半径都相等,所有的直径都相等。2.在同一个圆内,有无数条半径,有无数条直径。3.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2rr=d4.圆的周长:5.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取3.14。6.圆的周长公式:C=d或C=2r7、圆的面积:圆所占平面的大小叫圆的面积。8.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,只是...