1圆锥曲线综合复习求值求范围求最值定值轨迹方程对称一、求值1、如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点,一条垂直于轴的直线,分别与线段和直线交于,(1)若,求的值;(5分)(2)若为线段的中点,求证:为此抛物线的切线;(5分)(3)试问(2)的逆命题是否成立?说明理由。(4分)2如图,直线与椭圆交于两点,记的面积为.(I)求在,的条件下,的最大值;(II)当,时,求直线的方程.(第20题)23.已知直线与曲线交于两点A、B。(1)设,当时,求点P的轨迹方程;(2)是否存在常数a,对任意,都有?如果存在,求出a的值;如果不存在,说明理由。(3)是否存在常数m,对任意,都有为常数?如果存在,求出m的值;如果不存在,说明理由。4.2011年江苏如图,在平面直角坐标系xOy中,M、N分别是椭圆x24+y22=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)当直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PAPB⊥5、是双曲线上一点,M,N分别是双曲线E的左、右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求的值.6、已知抛物线:=,圆:的圆心为点M(Ⅰ)求点M到抛物线的准线的距离;(Ⅱ)已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂直于AB,求直线的方程37.已知椭圆4x2+y2=1及直线y=x+m.(1)当m为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为2√105,求直线的方程.8.已知椭圆的左右焦点分别为,离心率,右准线方程为。(I)求椭圆的标准方程;(II)过点的直线与该椭圆交于两点,且,求直线的方程。9设椭圆C:22221(0)xyabab的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,2AFFB�.(I)求椭圆C的离心率;(II)如果|AB|=154,求椭圆C的方程.10.已知椭圆的离心率为,过右焦点F的直线与相交于、两点,当的斜率为1时,坐标原点到的距离为w.w.w.k.s.5.u.c.o.m(I)求,的值;(II)上是否存在点P,使得当绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与的方程;若不存在,说明理由。411.已知抛物线:,直线交于两点,是线段的中点,过作轴的垂线交于点.(Ⅰ)证明:抛物线在点处的切线与平行;(Ⅱ)是否存在实数使,若存在,求的值;若不存在,说明理由.二、求范围:1、设动点到点和的距离分别为和,,且存在常数,使得(1)证明:动点的轨迹为双曲线,并求出的方程;(2)过点作直线双曲线的右支于两点,试确定的范围,使,其中点为坐标原点.2.已知椭圆C的中心为坐标原点O,一个长轴端点为)2,0(,短轴端点和焦点所组成的四边形为正方形,直线l与y轴交于点),0(mP,与椭圆C交于相异两点A、B,且PBAP2.(Ⅰ)求椭圆方程;(Ⅱ)求m的取值范围.3.已知中心在原点的双曲线C的一个焦点是F1(−3,0),一条渐近线的方程是√5x−2y=0.(Ⅰ)求双曲线C的方程;(Ⅱ)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐5标轴围成的三角形的面积为812,求k的取值范围.三、求最值1、已知椭圆.过点(m,0)作圆的切线I交椭圆G于A,B两点.(I)求椭圆G的焦点坐标和离心率;(II)将表示为m的函数,并求的最大值.2、在平面直角坐标系xOy中,已知点A(0,-1),B点在直线上,M点满足,,M点的轨迹为曲线C.(I)求C的方程;(II)P为C上动点,为C在点P处的切线,求O点到距离的最小值.3、设F1、F2分别是椭圆x24+y2=1的左、右焦点.6(Ⅰ)若P是该椭圆上的一个动点,求|PF1|·|PF2|的最大值和最小值;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.4.已知椭圆的左、右焦点分别为,.过的直线交椭圆于两点,过的直线交椭圆于两点,且,垂足为.(Ⅰ)设点的坐标为,证明:;(Ⅱ)求四边...