本科实验报告实验名称:随机信号分析实验课程名称:随机信号分析实验实验时间:任课教师:实验地点:实验教师:实验类型:□原理验证□综合设计□自主创新学生姓名:学号/班级:组号:学院:同组搭档:1专业:成绩:实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。2、实现随机序列的数字特征估计。二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。(0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:y0=1,ynkyn−1(modN)2xn=yn/N序列为产生的(0,1)均匀分布随机数。下面给出了上式的3组常用参数:1、,周期;2、(IBM随机数发生器)周期;3、(ran0)周期;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。定理1.1若随机变量X具有连续分布函数FX(x),而R为(0,1)均匀分布随机变量,则有X=Fx−1(R)由这一定理可知,分布函数为FX(x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。2、MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x=rand(m,n)功能:产生m×n的均匀分布随机数矩阵。(2)正态分布的随机序列函数:randn用法:x=randn(m,n)功能:产生m×n的标准正态分布随机数矩阵。如果要产生服从分布的随机序列,则可以由标准正态随机序列产生。(3)其他分布的随机序列MATLAB上还提供了其他多种分布的随机数的产生函数,下表列出了部分函数。MATLAB中产生随机数的一些函数33、随机序列的数字特征估计对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,…,N-1。那么,X(n)的均值、方差和自相关函数的估计为利用MATLAB的统计分析函数可以分析随机序列的数字特征。(1)均值函数函数:mean用法:m=mean(x)功能:返回按上面第一式估计X(n)的均值,其中x为样本序列x(n)。(2)方差函数函数:var用法:sigma2=var(x)功能:返回按上面第二式估计X(n)的方差,其中x为样本序列x(n),这一估计为无偏估计。(3)互相关函数函数:xcorr用法:c=xcorr(x,y)c=xcorr(x)c=xcorr(x,y,'opition')4c=xcorr(x,'opition')功能:xcorr(x,y)计算X(n)与Y(n)的互相关,xcorr(x)计算X(n)的自相关。option选项可以设定为:'biased'有偏估计,即'unbiased'无偏估计,即按上面第三式估计。'coeff'm=0时的相关函数值归一化为1。'none'不做归一化处理。三、实验内容1、采用线性同余法产生均匀分布随机数1000个,计算该序列均值和方差与理论值之间的误差大小。改变样本个数重新计算。num=input('num=');n=2^31;k=2^16+3;y=zeros(1,num);x=zeros(1,num);y(1)=1;fori=2:numy(i)=mod(k*y(i-1),num);endx=y/num;m=mean(x);si=var(x);plot(x,'k');xlabel('n');ylabel('x(n)');axistight;5已知理论值均值为0.5方差为0.0833Num=10001002003004005006007008009001000n0.10.20.30.40.50.60.70.80.9x(n)m=0.4900>>sisi=0.0834NUM=5000mm=0.4950>>sisi=0.0834Num=3000mm=0.4833>>sisi=0.08326Num=5000mm=0.4980>>sisi=0.08332、参数为λ的指数分布的分布函数为Fx=1−e−λx利用反函数法产生参数为0.5的指数分布随机数1000个,测试其方差和相关函数。R=rand(1,1000);lambda=0.5;x=-log(1-R)/lambda;Dx=var(x);[Rm,m]=xcorr(x);subplot(211);plot(x,'k');xlabel('n');ylabel('x(n)');axistight;subplot(212);plot(m,Rm,'k');xlabel('m');ylabel('R(m)');axistight;DxDx=4.0781710020030...