电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2013版高考数学一轮复习精品学案:24二次函数VIP免费

2013版高考数学一轮复习精品学案:24二次函数_第1页
2013版高考数学一轮复习精品学案:24二次函数_第2页
2013版高考数学一轮复习精品学案:24二次函数_第3页
2013版高考数学一轮复习精品学案:函数、导数及其应用2.4二次函数【高考新动向】一、考纲点击1.理解并掌握二次函数的定义、图象及性质;2.会求二次函数在闭区间上的最值;3.运用二次函数、一元二次方程及一元二次不等式之间的联系去解决问题.二、热点、难点提示1.二次函数图象的应用及求最值是高考的热点.2.常将二次函数及相应的一元二次不等式、一元二次方程交汇在一起命题,重点考查三者之间的综合应用.3.题型以选择题、填空题为主,若与导数、解析几何知识交汇,则以解答题的形式出现.【考纲全景透析】1.二次函数的解析式2.二次函数的图象与性质【热点难点全析】一、求二次函数的解析式1.相关链接求二次函数解析式的方法及思路求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:2.例题解析【例1】设二次函数f(x)满足f(x-2)=f(-x-2)且图象在y轴上的截距为1,在x轴上截得的线段长为求f(x)的解析式.【方法诠释】二次函数f(x)满足f(x+t)=f(t-x),则其对称轴方程为x=t;图象在x轴上截得的线段长度公式为|x1-x2|,本题可设f(x)的一般式,亦可设顶点式.解析:设f(x)的两零点分别为x1,x2,方法一:设f(x)=ax2+bx+c,则由题知:c=1,且对称轴为x=-2.即b=4a.∴f(x)=ax2+4ax+1.∴b=4a=2∴函数f(x)的解析式为方法二: f(x-2)=f(-x-2),∴二次函数f(x)的对称轴为x=-2.设f(x)=a(x+2)2+b,且f(0)=1,∴4a+b=1.∴f(x)=a(x+2)2+1-4a=ax2+4ax+1,【方法指导】用待定系数法求二次函数的解析式:(1)设一般式是通法;(2)已知顶点(对称轴或最值),往往设顶点式;(3)已知图象与x轴的两交点,往往设两根式,若选用形式不当,引入的待定系数过多,会加大运算量.【例2】如图,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上、两点,该抛物线的对称轴x=-1与x轴相交于点,且∠ABC=90°,求:(1)直线AB对应函数的解析式;(2)抛物线的解析式.【解析】(1)由已知及图形得:A(4,0),B(0,-4k),(-1,0),又 ∠CBA=∠BOC=90°,∴OB2=CO·AO.∴(-4k)2=1×4,又 由图知k<0,∴所求直线的解析式为(2)设抛物线的解析式为y=ax2+bx+c,则解得∴所求抛物线的解析式为二、二次函数图象与性质的应用1.相关链接<一>求二次函数最值的类型及解法(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)常结合二次函数在该区间上的单调性或图象求解,最值一般在区间的端点或顶点处取得.<二>二次函数单调性问题的解法结合二次函数图象的升、降对对称轴进行分析讨论求解.注:配方法是解决二次函数最值问题的常用方法,但要注意自变量范围与对称轴之间的关系.2.例题解析【例】(2012·盐城模拟)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=-1时,求f(|x|)的单调区间.【方法诠释】解答(1)和(2)可根据对称轴与区间的关系,结合图象或单调性直接求解,对于(3),应先将函数化为分段函数,再求单调区间.解析:(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,则函数在[-4,2)上为减函数,在(2,6]上为增函数,∴f(x)min=f(2)=-1,f(x)max=f(-4)=(-4)2-4×(-4)+3=35.(2)函数f(x)=x2+2ax+3的对称轴为∴要使f(x)在[-4,6]上为单调函数,只需-a≤-4或-a≥6,解得a≥4或a≤-6.(3)当a=-1时,f(|x|)=x2-2|x|+3其图象如图所示:注:1.影响二次函数f(x)在区间[m,n]上最值的要素有三个,即抛物线的开口方向、对称轴位置、闭区间;常用数形结合思想求解,但当三要素中有一要素不明确时,要分情况讨论.2.确定与应用二次函数单调性,常借助其图象数形结合求解.三、二次函数与一元二次方程、一元二次不等式的综合问题1.相关链接二次函数问题的解题思路(1)解决一元二次方程根的分布问题的方法,常借助于二次函数的图象数形结合来解,一般从①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.(2)解决一元二次不等式的有关问题的策略,一般需借助于二次函数的图象、性质求解.2.例题解析【例3】设函数f(x)=a...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部