江苏省沛县中学高三教案《新课标》高三数学第一轮复习单元讲座—不等式解法及应用一.课标要求:1.不等关系通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.一元二次不等式①.经历从实际情境中抽象出一元二次不等式模型的过程;②通过函数图像了解一元二次不等式与相应函数、方程的联系;③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。3二元一次不等式组与简单线性规划问题①从实际情境中抽象出二元一次不等式组;②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。二.命题走向分析近几年的高考试题,本将主要考察不等式的解法,综合题多以与其他章节(如函数、数列等)交汇。从题型上来看,多以比较大小,解简单不等式以及线性规划等,解答题主要考察含参数的不等式的求解以及它在函数、导数、数列中的应用。预测2008年高考的命题趋势:1.结合指数、对数、三角函数的考察函数的性质,解不等式的试题常以填空题、解答题形式出现;2.以当前经济、社会、生活为背景与不等式综合的应用题仍是高考的热点,主要考察考生阅读以及分析、解决问题的能力;3.在函数、不等式、数列、解析几何、导数等知识网络的交汇点命题,特别注意与函数、导数综合命题这一变化趋势;4.对含参数的不等式,要加强分类讨论思想的复习,学会分析引起分类讨论的原因,合理分类,不重不漏。三.要点精讲1.不等式的解法解不等式是求定义域、值域、参数的取值范围时的重要手段,与“等式变形”并列的“不等式的变形”,是研究数学的基本手段之一。高考试题中,对解不等式有较高的要求,近两年不等式知识占相当大的比例。(1)同解不等式((1)fxgx()()与fxFxgxFx()()()()同解;(2)mfxgx0,()()与mfxmgx()()同解,mfxgx0,()()与mfxmgx()()同解;(3)fxgx()()0与fxgxgx()()(()00同解);2.一元一次不等式解一元一次不等式(组)及一元二次不等式(组)是解其他各类不等式的基础,必须熟练掌握,灵活应用。axbaaa分()()()102030情况分别解之。3.一元二次不等式axbxca200()或axbxca200()分a0及a0情况分别解之,还要注意bac24的三种情况,即0或0或0,最好联系二次函数的图象。4.分式不等式分式不等式的等价变形:>0f(x)·g(x)>0,≥0。第1页共9页江苏省沛县中学高三教案5.简单的绝对值不等式绝对值不等式适用范围较广,向量、复数的模、距离、极限的定义等都涉及到绝对值不等式。高考试题中,对绝对值不等式从多方面考查。解绝对值不等式的常用方法:①讨论法:讨论绝对值中的式于大于零还是小于零,然后去掉绝对值符号,转化为一般不等式;②等价变形:解绝对值不等式常用以下等价变形:|x|
0),|x|>ax2>a2x>a或x<-a(a>0)。一般地有:|f(x)|g(x)f(x)>g(x)或f(x)