]福建省长泰一中高考数学一轮复习《不等式证明》(一)学案1.比较法是证明不等式的一个最基本的方法,分比差、比商两种形式.(1)作差比较法,它的依据是:它的基本步骤:作差——变形——判断,差的变形的主要方法有配方法,分解因式法,分子有理化等.(2)作商比较法,它的依据是:若>0,>0,则例1.已知,求证:证法1:===∵>0,>0,∴即证法2:用心爱心专心1典型例题基础过关=1+∴故原命题成立,证毕.变式训练1:已知a、b、x、y∈R+且>,x>y.求证:>.解:证法一:(作差比较法)∵-=,又>且a、b∈R+,∴b>a>0.又x>y>0,∴bx>ay.∴>0,即>.证法二:(分析法)∵x、y、a、b∈R+,∴要证>,只需证明x(y+b)>y(x+a),即证xb>ya.由>>0,∴b>a>0.又x>y>0,知xb>ya显然成立.故原不等式成立.例2.已知a、b∈R+,求证:∴用心爱心专心2变式训练3:若为△ABC的三条边,且,则()A.B.C.D.答案:D.解析:,又∵∴。例4.设二次函数,方程的两个根、满足.(1)当x∈(0,x1)时,证明:x