第4讲直线、平面平行的判定与性质[考纲解读]1.掌握线线、线面、面面平行的判定定理和性质定理,并能应用它们证明有关空间图形的平行关系的简单命题.(重点)2.高考的重点考查内容之一,主要以几何体为载体考查线线、线面、面面平行的判定和性质.[考向预测]从近三年高考情况来看,本讲是高考的重点考查内容.预测2020年将会以以下两种方式进行考查:①以几何体为载体,考查线面平行的判定;②根据平行关系的性质进行转化.试题常以解答题的第一问直接考查,难度不大,属中档题型.1.直线与平面平行的判定定理和性质定理2.平面与平面平行的判定定理和性质定理3.必记结论(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)经过平面外一点有且只有一个平面与已知平面平行.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.1.概念辨析(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.()(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()答案(1)×(2)×(3)×(4)√2.小题热身(1)如果直线a平行于平面α,直线b∥a,则b与α的位置关系是()A.b与α相交B.b∥α或b⊂αC.b⊂αD.b∥α答案B解析两条平行线中的一条与已知平面相交,则另一条也与已知平面相交,所以由直线b∥a,可知若b与α相交,则a与α也相交,而由题目已知,直线a平行于平面α,所以b与α不可能相交,所以b∥α或b⊂α.故选B.(2)下列命题中成立的个数是()①直线l平行于平面α内的无数条直线,则l∥α;②若直线l在平面α外,则l∥α;③若直线l∥b,直线b⊂α,则l∥α;④若直线l∥b,直线b⊂α,那么直线l就平行于平面α内的无数条直线.A.1B.2C.3D.4答案A解析当直线l在平面内时,结论不成立,∴①错误.若直线l在平面α外,则l∥α或l与α相交,∴②错误.根据线面平行的定义可知,直线l在平面外时,结论才成立,∴③错误.根据平行公理可知,若直线l∥b,直线b⊂α,那么直线l就平行于平面α内的无数条直线,∴④正确.故成立的只有④,所以A正确.(3)如图,α∥β,△PAB所在的平面与α,β分别交于CD,AB,若PC=2,CA=3,CD=1,则AB=________.答案解析因为α∥β,所以CD∥AB,所以=.因为PC=2,CA=3,CD=1,所以AB=.(4)在正方体ABCD-A1B1C1D1中,下列结论正确的是________(填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.答案①②④解析如图,因为AB綊C1D1,所以四边形AD1C1B为平行四边形.故AD1∥BC1,从而①正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面,故③错误;因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,所以AD1∥平面BDC1,故④正确.题型直线与平面平行的判定与性质角度1线面平行判定定理的应用1.在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC的中点,又PA=AB=4,∠CDA=120°,点N在PB上,且PN=.求证:MN∥平面PDC.证明在正三角形ABC中,BM=2.在△ACD中, M为AC的中点,DM⊥AC,∴AD=CD,又 ∠ADC=120°,∴DM=,则=3.在等腰直角三角形PAB中,PA=AB=4,∴PB=4,则=3,∴=,∴MN∥PD.又MN⊄平面PDC,PD⊂平面PDC,∴MN∥平面PDC.角度2线面平行性质定理的应用2.如图所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CD⊥AB.求证:四边形EFGH是矩形.证明 CD∥平面EFGH,而平面EFGH∩平面BCD=EF,∴CD∥EF.同理HG∥CD,∴EF∥HG.同理HE∥GF,∴四边形EFGH为平行四边形,∴CD∥EF,HE∥AB,∴∠HEF为异面直线CD和AB所成的角.又 CD⊥AB,∴HE⊥EF.∴平行四边形EFGH为矩形.1.判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α)...