电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(通用版)高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 4 第4讲 随机事件与古典概型教案 理-人教版高三全册数学教案VIP免费

(通用版)高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 4 第4讲 随机事件与古典概型教案 理-人教版高三全册数学教案_第1页
1/12
(通用版)高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 4 第4讲 随机事件与古典概型教案 理-人教版高三全册数学教案_第2页
2/12
(通用版)高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 4 第4讲 随机事件与古典概型教案 理-人教版高三全册数学教案_第3页
3/12
第4讲随机事件与古典概型1.概率与频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.(2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).2.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇B,那么称事件A与事件B相等A=B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件,那么称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件A∩B=∅且A∪B=Ω3.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率:P(A)=1.(3)不可能事件的概率:P(A)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=1,P(A)=1-P(B).4.古典概型(1)基本事件的特点①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.(2)特点①试验中所有可能出现的基本事件只有有限个,即有限性.②每个基本事件发生的可能性相等,即等可能性.(3)概率公式P(A)=.5.对古典概型的理解(1)一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.正确判断试验的类型是解决概率问题的关键.(2)古典概型是一种特殊的概率模型,但并不是所有的试验都是古典概型.判断正误(正确的打“√”,错误的打“×”)(1)事件发生的频率与概率是相同的.()(2)随机事件和随机试验是一回事.()(3)在大量重复试验中,概率是频率的稳定值.()(4)两个事件的和事件发生是指这两个事件至少有一个发生.()(5)若A,B为互斥事件,则P(A)+P(B)=1.()(6)在一次试验中,其基本事件的发生一定是等可能的.()答案:(1)×(2)×(3)√(4)√(5)×(6)×(2016·高考天津卷)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.解析:选A.由题意得,甲不输的概率为+=.(教材习题改编)若A,B为对立事件,则()A.P(A+B)≤1B.P(AB)=1C.P(AB)=0D.P(A)+P(B)≤1解析:选C.由对立事件的定义可知:P(A+B)=1,P(A)+P(B)=1,P(AB)=0.因此C选项正确.在集合中任取一个元素,则所取元素恰好满足方程cosx=的概率是________.解析:基本事件总数为10,满足方程cosx=的基本事件数为2,故所求概率为P==.答案:掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+B发生的概率为________.解析:掷一个骰子的试验有6种可能结果,依题意P(A)==,P(B)==,所以P(B)=1-P(B)=1-=,显然A与B互斥,从而P(A+B)=P(A)+P(B)=+=.答案:随机事件的频率与概率[典例引领](2017·高考全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(通用版)高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 4 第4讲 随机事件与古典概型教案 理-人教版高三全册数学教案

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部