电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

福建省长泰一中高考数学一轮复习《函数的单调性》教案VIP免费

福建省长泰一中高考数学一轮复习《函数的单调性》教案_第1页
1/4
福建省长泰一中高考数学一轮复习《函数的单调性》教案_第2页
2/4
福建省长泰一中高考数学一轮复习《函数的单调性》教案_第3页
3/4
]福建省长泰一中高考数学一轮复习《函数的单调性》教案一、单调性例1.已知函数f(x)=ax+(a>1),证明:函数f(x)在(-1,+∞)上为增函数.证明方法一任取x1,x2∈(-1,+∞),不妨设x1<x2,则x2-x1>0,>1且>0,∴,又 x1+1>0,x2+1>0,∴>0,于是f(x2)-f(x1)=+>0,故函数f(x)在(-1,+∞)上为增函数.方法二f(x)=ax+1-(a>1),求导数得=axlna+, a>1,∴当x>-1时,axlna>0,>0,>0在(-1,+∞)上恒成立,则f(x)在(-1,+∞)上为增函数.方法三 a>1,∴y=ax为增函数,又y=,在(-1,+∞)上也是增函数.用心爱心专心1基础过关典型例题∴y=ax+在(-1,+∞)上为增函数.变式训练1:讨论函数f(x)=x+(a>0)的单调性.解:方法一显然f(x)为奇函数,所以先讨论函数f(x)在(0,+∞)上的单调性,设x1>x2>0,则f(x1)-f(x2)=(x1+)-(x2+)=(x1-x2)·(1-).∴当0<x2<x1≤时,>1,同理0<x<或-<x<0时,<0即f(x)分别在(0,]、[-,0)上是减函数.例2.判断函数f(x)=在定义域上的单调性.解:函数的定义域为{x|x≤-1或x≥1},则f(x)=,可分解成两个简单函数.f(x)==x2-1的形式.当x≥1时,u(x)为增函数,为增函数.∴f(x)=在[1,+∞)上为增函数.当x≤-1时,u(x)为减函数,为减函数,∴f(x)=在(-∞,-1]上为减函数.变式训练2:求函数y=(4x-x2)的单调区间.解:由4x-x2>0,得函数的定义域是(0,4).令t=4x-x2,则y=t. t=4x-x2=-(x-2)2+4,∴t=4x-x2的单调减区间是[2,4),增区间是(0,2].又y=t在(0,+∞)上是减函数,用心爱心专心2∴函数y=(4x-x2)的单调减区间是(0,2],单调增区间是[2,4).例3.求下列函数的最值与值域:(1)y=4-;(2)y=x+;(3)y=.解:(1)由3+2x-x2≥0得函数定义域为[-1,3],又t=3+2x-x2=4-(x-1)2.∴t∈[0,4],∈[0,2],从而,当x=1时,ymin=2,当x=-1或x=3时,ymax=4.故值域为[2,4].(2)方法一函数y=x+是定义域为{x|x≠0}上的奇函数,故其图象关于原点对称,故只讨论x>0时,即可知x<0时的最值.∴当x>0时,y=x+≥2=4,等号当且仅当x=2时取得.当x<0时,y≤-4,等号当且仅当x=-2时取得.综上函数的值域为(-∞,-4]∪[4,+∞),无最值.方法二任取x1,x2,且x1<x2,因为f(x1)-f(x2)=x1+-(x2+)=所以当x≤-2或x≥2时,f(x)递增,当-2<x<0或0<x<2时,f(x)递减.故x=-2时,f(x)最大值=f(-2)=-4,x=2时,f(x)最小值=f(2)=4,所以所求函数的值域为(-∞,-4]∪[4,+∞),无最大(小)值.(3)将函数式变形为y=,可视为动点M(x,0)与定点A(0,1)、B(2,-2)距离之和,连结AB,则直线AB与x轴的交点(横坐标)即为所求的最小值点.ymin=|AB|=,可求得x=时,ymin=.显然无最大值.故值域为[,+∞).变式训练3:在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).某公司每月最多生产100台报警系统装置,生产x(x>0)台的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润是收入与成本之差.(1)求利润函数P(x)及边际利润函数MP(x);(2)利润函数P(x)与边际利润函数MP(x)是否具有相同的最大值?解:(1)P(x)=R(x)-C(x)=(3000x-20x2)-(500x+4000)=-20x2+2500x-4000(x∈[1,100]且x∈N,)MP(x)=P(x+1)-P(x)=-20(x+1)2+2500(x+1)-4000-(-20x2+2500x-4000)=2480-40x(x∈[1,100]且x∈N).(2)P(x)=-20(x-2+74125,当x=62或63时,P(x)max=74120(元).因为MP(x)=2480-40x是减函数,所以当x=1时,MP(x)max=2440(元).因此,利润函数P(x)与边际利润函数MP(x)不具有相同的最大值.例4.(2009·广西河池模拟)已知定义在区间(0,+∞)上的函数f(x)满足f(=f(x1)-f(x2),且当用心爱心专心3x>1时,f(x)<0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2.解:(1)令x1=x2>0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.(2)任取x1,x2∈(0,+∞),且x1>x2,则>1,由于当x>1时,f(x)<0,所以f<0,即f(x1)-f(x2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

福建省长泰一中高考数学一轮复习《函数的单调性》教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部