第五节数列的综合问题[全盘巩固]1.已知各项均不为0的等差数列{an},满足2a3-a+2a11=0,数列{bn}是等比数列,且b7=a7,则b6b8=()A.2B.4C.8D.16解析:选D因为{an}为等差数列,所以a3+a11=2a7,所以已知等式可化为4a7-a=0,解得a7=4或a7=0(舍去),又{bn}为等比数列,所以b6b8=b=a=16.2.已知等比数列{an}中的各项都是正数,且5a1,a3,4a2成等差数列,则=()A.-1B.1C.52nD.52n-1解析:选C设等比数列{an}的公比为q(q>0),则依题意有a3=5a1+4a2,即a1q2=5a1+4a1q,q2-4q-5=0,解得q=-1或q=5.又q>0,因此q=5,所以==q2n=52n.3.在直角坐标系中,O是坐标原点,P1(x1,y1),P2(x2,y2)是第一象限的两个点,若1,x1,x2,4依次成等差数列,而1,y1,y2,8依次成等比数列,则△OP1P2的面积是()A.1B.2C.3D.4解析:选A根据等差、等比数列的性质,可知x1=2,x2=3,y1=2,y2=4.∴P1(2,2),P2(3,4).∴S△OP1P2=1.4.已知函数y=loga(x-1)+3(a>0,a≠1)所过定点的横、纵坐标分别是等差数列{an}的第二项与第三项,若bn=,数列{bn}的前n项和为Tn,则T10等于()A.B.C.D.解析:选B由y=loga(x-1)+3恒过定点(2,3),即a2=2,a3=3,又{an}为等差数列,∴an=n,n∈N*.∴bn=,∴T10…=-+-++-=1-=.5.(·宁波模拟)已知数列{an}满足a1=0,an+1=an+2+1,则a13=()A.143B.156C.168D.195解析:选C由an+1=an+2+1,可知an+1+1=an+1+2+1=(+1)2,即=+1,故数列{}是公差为1的等差数列,所以=+12=13,则a13=168.6.数列{an}的通项an=n2,其前n项和为Sn,则S30为()A.470B.490C.495D.510解析:选A注意到an=n2cos,且函数y=cos的最小正周期是3,因此当n是正整数时,an+an+1+an+2=-n2-(n+1)2+(n+2)2=3n+,其中n=1,4,7…,,S30=(a1+a2+a3)+(a4+a5+a6)…++(a28+a29+a30)…=+++=3×+×10=470.7.(·江西高考)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.解析:由题意知第n天植树2n棵,则前n天共植树2+22…++2n=(2n+1-2)棵,令2n+1-2≥100,则2n+1≥102,又25+1=26=64,26+1=27=128,∴n≥6.∴n的最小值为6.答案:68.数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}的连续三项,则数列{bn}的公比为________.解析:由题意知a=a1·a7,即(a1+2d)2=a1·(a1+6d),∴a1=2d,∴等比数列{bn}的公比q===2.答案:29.(·台州模拟)已知等差数列{an}的前n项和为Sn,且=,S7-S4=15,则Sn的最小值为______.解析:设等差数列{an}的公差为d,依题意有由此解得a1=-15,d=4,an=4n-19,Sn==2n2-17n=22-2,因此当n=4时,Sn取得最小值2n2-17n=2×42-17×4=-36.答案:-3610.(·新课标全国卷Ⅱ)已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{an}的通项公式;(2)求a1+a4+a7…++a3n-2.解:(1)设数列{an}的公差为d.由题意,a=a1a13,即(a1+10d)2=a1(a1+12d),于是d(2a1+25d)=0.又a1=25,所以d=0(舍去),或d=-2.故an=-2n+27.(2)令Sn=a1+a4+a7…++a3n-2.由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而Sn=(a1+a3n-2)=·(-6n+56)=-3n2+28n.11.已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a2·a4=65,a1+a5=18.(1)若1
0,∴a2