吉林省东北师范大学附属中学高中数学2.2.5推理证明复习小结教案理新人教A版选修2-2一、教学目标:1.了解本章知识结构。2.进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识。课题:数学归纳法3.认识数学本质,把握数学本质,增强创新意识,提高创新能力。二、教学重点:进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识。难点:认识数学本质,把握数学本质,增强创新意识,提高创新能力三、教学过程:【创设情境】一、知识结构:【探索研究】我们从逻辑上分析归纳、类比、演绎的推理形式及特点;揭示了分析法、综合法、数学归纳法和反证法的思维过程及特点。通过学习,进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识。【例题评析】例1:如图第n个图形是由正n+2边形“扩展”而来,(n=1,2,3,…)。则第n-2个图形中共有________个顶点。1推理与证明推理证明合情推理演绎推理直接证明间接证明类比推理归纳推理分析法综合法反证法数学归纳法变题:黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n个图案中有白色地面砖块。例2:长方形的对角线与过同一个顶点的两边所成的角为,则=1,将长方形与长方体进行类比,可猜测的结论为:_______________________;变题1:已知,m是非零常数,x∈R,且有=,问f(x)是否是周期函数?若是,求出它的一个周期,若不是,说明理由。变题2:数列的前n项和记为Sn,已知证明:2第1个第2个第3个(Ⅰ)数列是等比数列;(Ⅱ)例3:设f(x)=ax2+bx+c(a≠0),若函数f(x+1)与函数f(x)的图象关于y轴对称,求证:为偶函数。例4:设Sn=1+(n>1,n∈N),求证:()评析:数学归纳法证明不等式时,经常用到“放缩”的技巧。变题:是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)对于一切正整数n都成立?证明你的结论。解新疆王新敞特级教师源源源源源源http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/源源源源源源特级教师王新敞新疆假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有于是,对n=1,2,3下面等式成立1·22+2·32+…+n(n+1)2=记Sn=1·22+2·32+…+n(n+1)2(1)n=1时,等式以证,成立。3【课堂小结】体会常用的思维模式和证明方法。【反馈练习】1.(2005辽宁)在R上定义运算若不等式对任意实数成立,则A.B.C.D.2.定义A*B,B*C,C*D,D*B分别对应下列图形那么下列图形中可以表示A*D,A*C的分别是()A.(1)、(2)B.(2)、(3)C.(2)、(4)D.(1)、(4)3新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为()A新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆30B新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆26C新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆36D新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆6解析新疆王新敞特级教师源源源源源源http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/源源源源源源特级教师王新敞新疆 f(1)=36,f(2)=108=3×36,f(3)=360=10×36∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆4(1)(2)(3)(4)(1)(2)(3)(4)证明新疆王新敞特级教师源源源源源源http://www.xjktyg.com/wxc/wxckt@126.comwxc...