电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

二项式定理学案3人教A版选修3VIP免费

二项式定理学案3人教A版选修3_第1页
1/5
二项式定理学案3人教A版选修3_第2页
2/5
二项式定理学案3人教A版选修3_第3页
3/5
二项式定理学习目标:1理解和掌握二项式系数的性质,并会简单的应用;2.初步了解用赋值法是解决二项式系数问题;3.能用函数的观点分析处理二项式系数的性质,提高分析问题和解决问题的能力学习重点:二项式系数的性质及其对性质的理解和应用学习难点:二项式系数的性质及其对性质的理解和应用课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:1.二项式定理及其特例:(1)01()()nnnrnrrnnnnnnabCaCabCabCbnN,(2)1(1)1nrrnnnxCxCxx.2.二项展开式的通项公式:1rnrrrnTCab3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r的限制;求有理项时要注意到指数及项数的整数性二、讲解新课:1二项式系数表(杨辉三角)()nab展开式的二项式系数,当n依次取1,2,3⋯时,二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和2.二项式系数的性质:()nab展开式的二项式系数是0nC,1nC,2nC,⋯,nnC.rnC可以看成以r为自变量的函数()fr定义域是{0,1,2,,}n,例当6n时,其图象是7个孤立的点(如图)(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵mnmnnCC).直线2nr是图象的对称轴.(2)增减性与最大值.∵1(1)(2)(1)1!kknnnnnnknkCCkk,∴knC相对于1knC的增减情况由1nkk决定,1112nknkk,当12nk时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当n是偶数时,中间一项2nnC取得最大值;当n是奇数时,中间两项12nnC,12nnC取得最大值.(3)各二项式系数和:∵1(1)1nrrnnnxCxCxx,令1x,则0122nrnnnnnnCCCCC三、讲解范例:例1.在()nab的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和证明:在展开式01()()nnnrnrrnnnnnnabCaCabCabCbnN中,令1,1ab,则0123(11)(1)nnnnnnnnCCCCC,即02130()()nnnnCCCC,∴0213nnnnCCCC,即在()nab的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.说明:由性质(3)及例1知021312nnnnnCCCC.例2.已知7270127(12)xaaxaxax,求:(1)127aaa;(2)1357aaaa;(3)017||||||aaa.解:(1)当1x时,77(12)(12)1x,展开式右边为∴0127aaaa1,当0x时,01a,∴127112aaa,(2)令1x,0127aaaa1①令1x,7012345673aaaaaaaa②①②得:713572()13aaaa,∴1357aaaa7132.(3)由展开式知:1357,,,aaaa均为负,0248,,,aaaa均为正,∴由(2)中①+②得:702462()13aaaa,∴70246132aaaa,∴017||||||aaa01234567aaaaaaaa例3.求(1+x)+(1+x)2+⋯+(1+x)10展开式中x3的系数解:)x1(1])x1(1)[x1(x1)x1()x1(10102)(=xxx)1()1(11,∴原式中3x实为这分子中的4x,则所求系数为711C例4.在(x2+3x+2)5的展开式中,求x的系数解:∵5552)2x()1x()2x3x(∴在(x+1)5展开式中,常数项为1,含x的项为x5C15,在(2+x)5展开式中,常数项为25=32,含x的项为x80x2C415∴展开式中含x的项为x240)32(x5)x80(1,∴此展开式中x的系数为240例5.已知n2)x2x(的展开式中,第五项与第三项的二项式系数之比为14;3,求展开式的常数项解:依题意2n4n2n4nC14C33:14C:C∴3n(n-1)(n-2)(n-3)/4!=4n(n-1)/2!n=10设第r+1项为常数项,又2r510r10rr2r10r101rxC)2()x2()x(CT令2r02r510,.180)2(CT221012此所求常数项为180四、课堂练习:(1)2025xy的展开式中二项式系数的和为,各项系数的和为,二项式系数最大的项为第项;(2)1()nxx的展开式中只有第六项的二项式系数最大,则第四项为.(3)0nC+12nC+24nC+2nnnC729,则123nnnnnCCCC()A.63B.64C.31D.32(4)已知:5025001250(23)xaaxaxax,求:2202501349()()aaaaaa的值答案:(1)202,203,11;(2)展开式中只有第六项的二项式系数最大,∴10n,3734101()()120TCxxx;(3)A.五、小结:1.性质1是组合数公式rnrnnCC的再现,性质2是从函数的角度研究的二项式系数的单调性,性质3是利用赋值法得出的二项展开式中所有二项式系数的和;2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法六、课后作业:七、板书设计(略)八、课后记:求60.998的近似值,使误差小于0.001.解:66011666660.998(10.002)(0.002)(0.002)CCC,展开式中第三项为2260.0020.00006C,小于0.001,以后各项的绝对值更小,可忽略不计,∴66011660.998(10.002)(0.002)0.998CC,一般地当a较小时(1)1nana

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

二项式定理学案3人教A版选修3

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部