教师招聘考试真题[中学数学科目](满分为120分)第一部分数学教育理论与实践一、简答题(10分)教育改革已经紧锣密鼓,教学中应确立这样的思想“以促进学生的全面发展为本,以提高全体学生的数学素质为纲”,作为教师要该如何去做呢?谈谈高中数学新课程改革对教师的要求。二、论述题(10分)如何提高课堂上情境创设、合作学习、自主探究的实效性?第二部分数学专业基础知识一、选择题(本题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数(1+i)(1-i)=()A.2B.-2C.2iD.-2i2.20(3x2+k)dx=10,则k=()A.1B.2C.3D.43.在二项式(x-1)6的展开式中,含x3的项的系数是()A.-15B.15C.-20D.204.200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有()A.30辆B.40辆C.60辆D.80辆5.某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可近似地表示为f(t)=2100t,则在时刻t=10min的降雨强度为()A.15mm/minB.14mm/minC.12mm/minD.1mm/min6.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)等于()A.2B.3C.6D.97.已知函数f(x)=2x+3,f-1(x)是f(x)的反函数,若mn=16(m,n∈R+),则f-1(m)+f-1(n)的值为()A.-2B.1C.4D.108.双曲线2222xy-ab=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为()A.6B.3C.2D.339.如图,α⊥β,α∩β=l,A∈α,B∈β,A,B到l的距离分别是a和b,AB与α,β所成的角分别是θ和φ,AB在α,β内的射影分别是m和n,若a>b,则()A.θ>φ,m>nB.θ>φ,mny≥110.已知实数x,y满足y≤2x-1如果目标函数z=x-y的最小值为-1,则实数m等于()x+y≤mA.7B.5C.4D.3二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上。11.x2+4y2=16的离心率等于,与该椭圆有共同焦点,且一条渐近线是x+3y=0的双曲线方程是。12.不等式|x+1|+|x-2|≥5的解集为。y=sinθ+113.在直角坐标系xOy中,已知曲线C的参数方程是x=cosθ(θ是参数),若以O为极点,x轴的正半轴为极轴,则曲线C的极坐标方程可写为。14.已知函数f(x)=2x,等差数列{ax}的公差为2,若f(a2+a4+a6+a8+a10)=4,则log2[f(a1)·f(a2)·f(a3)·…·f(a10)]=。15.已知:如右图,PT切⊙O于点T,PA交⊙O于A、B两点且与直径CT交于点D,CD=2,AD=3,BD=6,则PB=。三、解答题(本大题共5小题,共45分。)解答应写出文字说明,证明过程或演算步骤。16.(本小题满分8分)在△ABC中,∠B=4,AC=25,cosC=255。(Ⅰ)求sinA;(Ⅱ)记BC的中点为D,求中线AD的长。17.(本小题满分8分)在一次数学考试中,第14题和第15题为选做题。规定每位考生必须且只须在其中选做一题。设4名考生选做这两题的可能性均为12。(Ⅰ)其中甲、乙2名学生选做同一道题的概率;(Ⅱ)设这4名考生中选做第15题的学生数为ξ个,求的分布列及数学期望。18.(本小题满分8分)如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=22AD,若E、F分别为PC、BD的中点。(Ⅰ)EF//平面PAD;(Ⅱ)求证:平面PDC⊥平面PAD;(Ⅲ)求二面角B-PD-C的正切值。19.(本小题满分9分)已知函数fx=x3+3ax-1,gx=f′x-ax-5,其中f′x是f(x)的导函数。(Ⅰ)对满足-1≤a≤1的一切a的值,都有gx<0,求实数x的取值范围;(Ⅱ)设a=-m2,当实数m在什么范围内变化时,函数y=fx的图像与直线y=3只有一个公共点。20.(本小题满分12分)把由半椭圆2222xy+ab=1(x≥0)与半椭圆2222xy+bc=1(x≤0)合成的曲线称作“果圆”,其中a2=b2+c2,a>0,b>c>0。如下图所示,点F0,F1,F2是相应椭圆的焦点,A1,A2和B1,B2分别是“果圆”与x,y轴的交点。(1)若△F0F1F2是边长为1的等边三角形,求“果圆”的方程;(2)当|A1A2|>|B1B2|时,求ba的取值范围;(3)连接“果圆”上任意两点的线段称为“果圆”的弦。试研究:是否存在实数k,使斜率为k的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求...