电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

学习乘法公式应注意的问题VIP免费

学习乘法公式应注意的问题_第1页
1/5
学习乘法公式应注意的问题_第2页
2/5
学习乘法公式应注意的问题_第3页
3/5
学习乘法公式应注意的问题乘法公式是初中数学中的重要公式之一,应用也很广泛.但要真正学好它,必须注意以下几点:一、注意掌握公式的特征,认清公式中的“两数”.例1计算(-2x2-5)(2x2-5)分析:本题两个因式中“-5”相同,“2x2”符号相反,因而“-5”是公式(a+b)(a-b)=a2-b2中的a,而“2x2”则是公式中的b.解:原式=(-5-2x2)(-5+2x2)=(-5)2-(2x2)2=25-4x4.例2计算(-a2+4b)2分析:运用公式(a+b)2=a2+2ab+b2时,“-a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为(4b-a2)2时,则“4b”是公式中的a,而“a2”就是公式中的b.(解略)二、注意为使用公式创造条件例3计算(2x+y-z+5)(2x-y+z+5).分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式.解:原式=〔(2x+5)+(y-z)〕〔(2x+5)-(y-z)〕=(2x+5)2-(y-z)2=4x2+20x+25-y+2yz-z2.例4计算(a-1)2(a2+a+1)2(a6+a3+1)2分析:若先用完全平方公式展开,运算十分繁冗,但注意逆用幂的运算法则,则可利用乘法公式,使运算简便.解:原式=[(a-1)(a2+a+1)(a6+a3+1)]2=[(a3-1)(a6+a3+1)]2=(a9-1)2=a18-2a9+1例5计算(2+1)(22+1)(24+1)(28+1).分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简.解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)=(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1三、注意公式的推广计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例6计算(2x+y-3)2解:原式=(2x)2+y2+(-3)2+2·2x·y+2·2x(-3)+2·y(-3)=4x2+y2+9+4xy-12x-6y.四、注意公式的变换,灵活运用变形公式例7(1)已知x+y=10,x3+y3=100,求x2+y2的值;(2)已知:x+2y=7,xy=6,求(x-2y)2的值.分析:粗看似乎无从下手,但注意到乘法公式的下列变形:x2+y2=(x+y)2-2xy,x3+y3=(x+y)3-3xy(x+y),(x+y)2-(x-y)2=4xy,问题则十分简单.解:(1) x3+y3=(x+y)3-3xy(x+y),将已知条件代入得100=103-3xy·10,∴xy=30故x2+y2=(x+y)2-2xy=102-2×30=40.(2)(x-2y)2=(x+2y)2-8xy=72-8×6=1.例8计算(a+b+c)2+(a+b-c)2+(a-b+c)+(b-a+c)2.分析:直接展开,运算较繁,但注意到由和及差的完全平方公式可变换出(a+b)2+(a-b)2=2(a2+b2),因而问题容易解决.解:原式=[(a+b)+c]2+[(a+b)-c]2+[c+(a-b)]2+[c-(a-b)]2=2[(a+b)2+c2]+2[c2+(a-b)2]=2[(a+b)2+(a-b)2]+4c2=4a2+4b2+4c2五、注意乘法公式的逆运用例9计算(a-2b+3c)2-(a+2b-3c)2.分析:若按完全平方公式展开,再相减,运算繁杂,但逆用平方差公式,则能使运算简便得多.解:原式=[(a-2b+3c)+(a+2b-3c)][(a-2b+3c)-(a+2b-3c)]=2a(-4b+6c)=-8ab+12ac.例10计算(2a+3b)2-2(2a+3b)(5b-4a)+(4a-5b)2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便.解:原式=(2a+3b)2+2(2a+3b)(4a-5b)+(4a-5b)2=[(2a+3b)+(4a-5b)]2=(6a-2b)2=36a2-24ab+4b2.学习“乘法公式”六注意初学者对于各乘法公式的结构特征以及公式中字母的广泛含义往往不易掌握,运用时容易混淆,因此要学习好乘法公式,必须注意以下几点:一、注意乘法公式的推导乘法公式是直接计算特殊的多项式乘法得来的,即平方差公式:(a+b)(a-b)=a2-ab+ab-b2=a2-b2;完全平方公式:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2;(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2.由此可见,理解乘法公式要与多项式乘法联系起来,这样对公式才理解的深、记得准、记得牢,一旦把公式忘记了,自己也可以把公式推导出来.二、注意掌握乘法公式的结构特征乘法公式的结构特征是各公式的本质所在.在学习时,应仔细观察其结构特征,并会用语言加以表述平方差公式:(a+b)(a-b)=a2-b2;结构特征:公式的左边是两个数的和与这两个数的差的积,而右边是这两个数的平方差.完全平方公式:(a±b)2=a2±2ab+b2.结构特征:公式的左边是两数...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

学习乘法公式应注意的问题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部