江苏省麒麟中学高一数学3.2.2函数模型的应用实例课堂随练苏教版必修1某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量与月份的关系,模拟函数可以选用二次函数或函数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.探索以下问题:1.本例给出两种函数模型,如何根据已知数据确定它们?2.如何对所确定的函数模型进行评价?基础闯关1.按复利计算,若存入银行5万元,年利率2%,3年后支取,则可得利息(单位:万元)()A.5(1+0.02)B.5(1+0.02)C.5(1+0.02)-5C.5(1+0.02)-52.计算机成本不断降低,若每隔4年计算机价格就降低,现价为6000元的计算机,则6年后的价格为()A.2100元B.2250元C.2500元D.2000元3.已知某工厂生产某种产品的月产量y与月份x满足关系y=a·(0.5)x+b,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为万件.4.某工厂1992年底某种产品年产量为a,若该产品的年平均增长率为x,2000年底该厂这种产品的年产量为y,那么y与x的函数关系式是______.5.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为()A.na(1-b%)B.a(1-nb%)C.aD.a(1-b%)n6.在本市投寄平信,每封信不超过20克付邮资0.8元,超过20克但不超过40克付1.6元,依此类推,每增加20克增加0.8元(信的质量在100克以内),某人所寄一封信72.5克,则应付邮资元.A.2.4B.2.8C.3D.3.2拓展训练7.算机成本不断降低,如每隔3年价格降低,现在价格是元的计算机9年后的价格为()A.2400元B.900元C.300元D.3600元8.A、B两地相距150公里,某人以60公里时速开车从A往B,在B停留1小时后再以50公里时速返回A,则汽车离开A地的距离与时间的函数关系式为()1A.B.2