第一讲计数原理、二项式定理一、两个计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.二、排列组合1、排列与排列数(1).排列从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2).排列数从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A.2、组合与组合数(1).组合从n个不同元素中取出m(m≤n)个元素组成一组,叫做从n个不同元素中取出m个元素的一个组合.(2).组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C.3、排列数、组合数的公式及性质1公式(1)A=n(n-1)(n-2)…(n-m+1)=(2)C===(n,m∈N*,且m≤n).特别地C=1.性质(1)0!=1;(2)A=n!.(2)①C=C;②C=C+C.解排列、组合应用题的常见策略(1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略.三、二项式定理1、二项式定理(1).(a+b)n=Can+Can-1b+…+Can-rbr+…+Cbn(n∈N*).(2).第r+1项,Tr+1=Can-rbr.(3).第r+1项的二项式系数为C.2、二项式系数的性质(1).0≤k≤n时,C与C的关系是C=C.(2).二项式系数先增后减中间项最大且n为偶数时第+1项的二项式系数最大,最大值为Cn;当n为奇数时,第项和项的二项式系数最大,最大值为Cn或Cn.(3).各二项式系数和:C+C+C+…+C=2n,C+C+C+…=C+C+C+…=2n-1.基础自测1.在所有的两位数中,个位数字大于十位数字的两位数共有()A.50个B.45个C.36个D.35个【解析】根据题意,十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).【答案】C2.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种【解析】分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下2的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种),故选C.【答案】C3.A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有()A.24种B.60种C.90种D.120种【解析】可先排C、D、E三人,共A种排法,剩余A、B两人只有一种排法,由分步计数原理满足条件的排法共A=60(种).【答案】B4.(2013·大纲全国卷)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.224【解析】该二项展开式的通项为Tr+1=Cx8-r2r=2rCx8-r,令r=2,得T3=22Cx6=112x6,所以x6的系数是112.【答案】C考点一两个计数原理例6个学生按下列要求站成一排,求各有多少种不同的站法?(1)甲不站排头,乙不能站排尾;(2)甲、乙都不站排头和排尾;(3)甲、乙、丙三人中任何两人都不相邻;(4)甲、乙都不与丙相邻.【思路点拨】(1)按甲站的位置分类求解;(2)先排甲、乙的位置,再排其他学生;(3)不相邻问题用插空法求解;(4)按丙站的位置分类求解.【尝试解答】(1)分两类:甲站排尾,有A种;甲站中间四个位置中的一个,且乙不站排尾,有AAA种.由分类计数原理,共有A+AAA=504(种).(2)分两步:首先将甲、乙站在中间四个位置中的两个,有A种;再站其余4人,有A种.由分步计数原理,共有A·A=288(种).(3)分两步:先站其余3人,有A种;再将甲、乙、丙3人插入前后四个空当,有A种.由分步计数原理,共有A·A...