2015年山东省济宁市微山一中高考数学二模试卷(文科)一、选择题:(本大题共10小题,每小题5分,满分50分在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={(x,y)|x,y为实数,且y=x2},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.无数个B.3C.2D.12.已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D.3.在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.4.执行如图所示的程序框图,若输入n的值为5,则输出结果为()A.5B.6C.11D.165.“a=﹣l”是“直线(a﹣1)x﹣y﹣l=0与直线2x﹣ay+l=0平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.等差数列{an}前n项和为Sn,若a10+a11=10,则=()A.lB.2C.一lD.一217.用单位立方块搭一个几何体,使它的主视图和俯视图如图所示,则它的体积的最小值与最大值分别为()A.9与13B.7与10C.10与16D.10与158.平行四边形ABCD中,点P在边AB上(不含端点),.若||=2,||=1,∠BAD=60°且=﹣1.则λ=()A.1B.C.D.9.若直线(m+l)x+(n+l)y﹣2=0(m,n∈R)与圆(x﹣l)2+(y﹣1)2=1相切,则m+n的取值范围是()A.B.C.D.10.已知函数y=f(x)是定义域为R的奇函数.当x≥0时f(x)=.若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则实数m的值为()A.﹣1B.2﹣2C.2﹣D.3﹣2二、填空题:本大题共5小题,每小题5分,共25分请将答案填在答题卡对应题号位置上答错位置,书写不清.模棱两可均不得分11.若复数z满足1+zi=z(i为虚数单位),则z=.12.已知下表所示数据的回归直线方程为=4x+242.则实数a=13.若n>0(0<a<1),则关于x的不等式≥0的解集为.14.实数x、y满足,则z=x2+y2+2x﹣2y的最小值为.X23456y251254257a266215.在△ABC中,角A,B,C所对的边分别为a,b,c,给出下列命题:①若A>B>C,则sinA>sinB>sinC;②若,则△ABC为等边三角形;③存在角A,B,C,使得tanAtanBtanC<tanA+tanB+tanC成立;④若a=40,b=20,B=25°,则满足条件的△ABC有两个;⑤若0<tanAtanB<1,则△ABC是钝角三角形.其中正确的命题为(写出所有正确命题的序号)三、解答题:本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤.16.在平面直角坐标系中,已知A(cosx,1),B(l,﹣sinx),X∈R,(Ⅰ)求|AB|的最小值;(Ⅱ)设,将函数f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)的图象求函数g(x)的对称中心.17.如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.18.函数f(x)=(x2+ax+1)ex.(Ⅰ)若函数f(x)在区间(2,3)上递增,求实数a的取值范围;(Ⅱ)若曲线y=f(x)在x=0处的切线方程为y=l,求证:对任意x1,x2∈[0,1],|f(x1)﹣f(x2)|<2.19.设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,且满足Tn=﹣3n,n∈N*(Ⅰ)求a1的值.(Ⅱ)求数列{an}的通项公式;(Ⅲ)记bn=,n∈N*,求证:b1+b2+…+bn<1.320.如图,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分.曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,A,B是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=,|AF2|=.(1)求曲线C1和C2的方程;(2)设点C,D是曲线C2所在抛物线上的两点(如图).设直线OC的斜率为k1,直线OD的斜率为k2,且k1+k2=,证明:直线CD过定点,并求该定点的坐标.42015年山东省济宁市微山一中高考数学二模试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,满分50分在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={(x,y)|x,y为实数,且y=x2},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.无数个B.3C.2D.1考点:直线与圆锥曲线的关系.专题:圆锥曲线...