2015-2016学年河南省安阳市林州一中高一(上)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A∩(∁UB)=()A.{4,5}B.{2,3}C.{1}D.{2}2.函数f(x)=+lg(3x+1)的定义域是()A.(﹣,+∞)B.(﹣,1)C.(﹣,)D.(﹣∞,﹣)3.如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是()A.B.1C.D.4.若直线a不平行于平面α,则下列结论成立的是()A.α内所有的直线都与a异面B.α内不存在与a平行的直线C.α内所有的直线都与a相交D.直线a与平面α有公共点5.如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行.②CN与BE是异面直线.③CN与AF垂直.④DM与BN是异面直线.1以上四个命题中正确的个数是()A.1B.2C.3D.46.直线a∥平面α,P∈α,那么过P且平行于a的直线()A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内7.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是()A.25πB.50πC.125πD.都不对8.如图所示是一个几何体的三视图,则该几何体的体积为()A.2π+8B.8π+8C.4π+8D.6π+89.在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1:3,则锥体被截面所分成的两部分的体积之比为()A.1:B.1:9C.1:D.1:()210.给出下列命题,其中错误命题的个数为()(1)直线a与平面α不平行,则a与平面α内的所有直线都不平行;(2)直线a与平面α不垂直,则a与平面α内的所有直线都不垂直;(3)异面直线a、b不垂直,则过a的任何平面与b都不垂直;(4)若直线a和b共面,直线b和c共面,则a和c共面.A.1B.2C.3D.411.如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,E,F,G分别是DD1,AB,CC1的中点,则异面直线A1E与GF所成角为()A.30°B.45°C.60°D.90°12.已知偶函数f(x)=loga|x﹣b|在(﹣∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是()A.f(a+1)≥f(b+2)B.f(a+1)>f(b+2)C.f(a+1)≤f(b+2)D.f(a+1)<f(b+2)二、填空题(2015秋•林州市校级期末)在长方体ABCD﹣A′B′C′D′中,M,N分别为AB,A′D′的中点,则直线MN与平面A′BC′的位置关系是.14.若不等式a≤x2﹣4x对任意x∈(0,3]恒成立,则a的取值范围是.15.函数在[﹣1,+∞)上是减函数,则实数a的取值范围是.316.将边长为2,有一内角为60°的菱形ABCD沿较短对角线BD折成四面体ABCD,点E、F分别为AC、BD的中点,则下列命题中正确的是;(将正确的命题序号全填上).①EF∥AB;②EF与异面直线AC、BD都垂直;③当四面体ABCD的体积最大时,AC=;④AC垂直于截面BDE.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:(2)已知简单组合体如图,试画出它的三视图(尺寸不做严格要求)18.如图是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.相传这个图形表达了阿基米德最引以自豪的发现.我们来重温这个伟大发现:(1)求圆柱的体积与球的体积之比;(2)求圆柱的表面积与球的表面积之比.19.如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.(1)求证:BE∥平面DMF;(2)求证:平面BDE∥平面MNG.420.如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.(1)求证:MN∥平面CDEF;(2)求多面体A﹣CDEF的体积;(3)求证:CE⊥AF.21.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求PB和平面PAD所成的角的大小;(2)证明:AE⊥平面PCD;(3)求二面角A﹣PD﹣C得到正弦值.22.(文)二次函数f(x)满足f(x+1)﹣f(x)=2x,且f(0)=1.5(1)求f(x)的解析式;(2)若在区间[t,t+2]上,不等式f(x)>2x+m恒成立,求...