电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

追本溯源 用定义解题 专题辅导 不分版本VIP免费

追本溯源 用定义解题 专题辅导 不分版本_第1页
1/1
追本溯源用定义解题郭天平追本溯源,也就是同学们常说的回归定义。定义常常是解决问题的犀利武器。我们在学习圆锥曲线内容时,不仅要领悟其概念的实质,而且要强化应用定义解题的意识,在解题中进行灵活运用。例1已知点P在椭圆上,椭圆焦点为F1、F2,过点F2作∠F1PF2补角的平分线的垂线,垂足为M,求点M的轨迹方程。分析:若直接设点M(x,y),寻求关系式求轨迹方程则非常困难,若能利用平面几何的知识,采用“追本溯源”的策略,结合圆与椭圆的定义,问题就可迎刃而解。解:分别延长F2M、F1P,设其交点为N(如下图)∵PM平分∠F2PN,PM⊥F2M∴PM是F2N的垂直平分线,|F2M|=|MN|,|F2P|=|PN|。∵|OF1|=|OF2|∴OM是△F1F2N的中位线。∴点M的轨迹方程为。例2过原点的椭圆的一个焦点为F1(1,0),长轴长为4,求椭圆中心的轨迹。分析:此题看似简单,却是一道颇费思量的题目,当题中条件不易直接得出结论时,回归定义,“追本溯源”是最好的办法。解:设椭圆中心为M(x,y),由于椭圆的一个焦点为F1(1,0),则椭圆的另一个焦点为F2(2x-1,2y),再由椭圆的定义知,即,即(除去点(-1,0))。用心爱心专心115号编辑1

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

追本溯源 用定义解题 专题辅导 不分版本

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部