2015年山东省济宁市梁山一中高考数学模拟试卷(理科)(4月份)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+iD.﹣4﹣i3.设U为全集,A,B是集合,则“存在集合C使得AC⊆,B⊆∁UC”是“A∩B=”∅的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要条件4.分配4名水暖工去3个不同的居民家里检查暖气管道,要求4名水暖工都分配出去,并每名水暖工只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有()A.种B.A33A31种C.C41C31种D.C42A33种5.阅读下面程序框图,则输出结果s的值为()A.B.C.D.6.在数列{an}中,“an=2an﹣1,n=2,3,4,…”是“{an}是公比为2的等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.若x,y满足,则x+2y的最大值为()A.B.6C.11D.1018.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为()A.9B.10C.11D.9.已知P是△ABC所在平面内一点,,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是()A.B.C.D.10.如图,已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上的一点,F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=1,则双曲线的离心率是()A.3B.2C.D.11.设等差数列{an}的前n项和为Sn,已知(a2012﹣1)3+2014a2012=0,(a3﹣1)3+2014a3=4028,则下列结论正确的是()A.S2014=2014,a2012<a3B.S2014=2014,a2012>a3C.S2014=2013,a2012<a3D.S2014=2013,a2012>a312.已知函数f(x)=x2+2a1og2(x2+2)+a2﹣3有且只有一个零点,则实数a的值为()A.1B.﹣3C.2D.1或﹣3二、填空题(本大题共4小题,每小题5分,共20分)213.已知向量,夹角为45°,且||=1,|2﹣|=,则||=.14.三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为.15.已知动点P(x,y)在椭圆C:+=1上,F为椭圆C的右焦点,若点M满足|MF|=1.且MP⊥MF,则线段|PM|的最小值为.16.已知,数列的前n项和为Sn,数列{bn}的通项公式为bn=n﹣8,则bnSn的最小值为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.在△ABC中,角A、B、C所对的边分别是a、b、c,且∠ACB=π.(I)若a、b、c依次成等差数列,且公差为2,求c的值;(Ⅱ)若c=,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.18.某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L1,L2两条巷道通往作业区(如图),L1巷道有A1,A2,A3三个易堵塞点,各点被堵塞的概率都是;L2巷道有B1,B2两个易堵塞点,被堵塞的概率分别为,.(Ⅰ)求L1巷道中,三个易堵塞点最多有一个被堵塞的概率;(Ⅱ)若L2巷道中堵塞点个数为X,求X的分布列及数学期望EX,并按照“平均堵塞点少的巷道是较好的抢险路线“的标准,请你帮助救援队选择一条抢险路线,并说明理由.19.如图,三棱柱ABC﹣A1B2C3的底面是边长为4正三角形,AA1⊥平面ABC,AA1=2,M为A1B1的中点.(Ⅰ)求证:MC⊥AB;(Ⅱ)在棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,确定点P的位置;若不存在,说明理由.(Ⅲ)若点P为CC1的中点,求二面角B﹣AP﹣C的余弦值.20.如图,过抛物线C:y2=4x上一点P(1,﹣2)作倾斜角互补的两条直线,分别与抛物线交于点A(x1,y1),B(x2,y2)(1)求y1+y2的值;3(2)若y1≥0,y2≥0,求△PAB面积的最大值.21.设f(x)=cosx+﹣1.(Ⅰ)求证:当x≥0时,f(x)≥0;(Ⅱ)若不等式eax≥sinx﹣cosx+2对任意的x≥0恒成立,求实数a的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.选修4-1:几何证明...