专题限时集训(十)空间中的平行与垂直关系[建议A、B组各用时:45分钟][A组高考达标]一、选择题1.设α为平面,a,b为两条不同的直线,则下列叙述正确的是()A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥αB[A中,两直线可能平行、相交或异面,故A错;B中,由直线与平面垂直的判定定理可知B正确;C中,b可能平行α,也可能在α内,故C错;D中,b可能平行α,也可能在α内,还可能与α相交,故D错.综上所述,故选B.]2.(2017·南昌模拟)如图105,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()【导学号:04024096】图105A.直线AB上B.直线BC上C.直线AC上D.△ABC内部A[因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平面ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.]3.已知α,β是两个不同的平面,有下列三个条件:①存在一个平面γ,γ⊥α,γ∥β;②存在一条直线a,a⊂α,a⊥β;③存在两条垂直的直线a,b,a⊥β,b⊥α.其中,所有能成为“α⊥β”的充要条件的序号是()A.①B.②C.③D.①③D[对于①,存在一个平面γ,γ⊥α,γ∥β,则α⊥β,反之也成立,即“存在一个平面γ,γ⊥α,γ∥β”是“α⊥β”的充要条件,所以①对,可排除B,C.对于③,存在两条垂直的直线a,b,则直线a,b所成的角为90°,因为a⊥β,b⊥α,所以α,β所成的角为90°,即α⊥β,反之也成立,即“存在两条垂直的直线a,b,a⊥β,b⊥α”是“α⊥β”的充要条件,所以③对,可排除A,选D.]4.(2017·莆田模拟)已知正方体ABCDA1B1C1D1,平面α过直线BD,α⊥平面AB1C,α∩平面AB1C=m,平面β过直线A1C1,β∥平面AB1C,β∩平面ADD1A1=n,则m,n所成的角的余弦值为()A.B.C.D.D[如图,由题中条件知,直线m为B1O,直线n为A1D, B1C∥A1D,∴B1O与A1D所成的角为∠CB1O(或其补角),设正方体的棱长为a,在△CB1O中,B1C=a,CO=a,B1O=a,∴cos∠CB1O==.故选D.]5.(2017·武汉模拟)如图106,在矩形ABCD中,AB=,BC=1,将△ACD沿AC折起,使得D折起后的位置为D1,且D1在平面ABC上的射影恰好落在AB上,在四面体D1ABC的四个面中,有n对平面相互垂直,则n等于()【导学号:04024097】图106A.2B.3C.4D.5B[设D1在平面ABC上的射影为E,连接D1E,则D1E⊥平面ABC, D1E⊂平面ABD1,∴平面ABD1⊥平面ABC. D1E⊥平面ABC,BC⊂平面ABC,∴D1E⊥BC,又AB⊥BC,D1E∩AB=E,∴BC⊥平面ABD1,又BC⊂平面BCD1,∴平面BCD1⊥平面ABD1, BC⊥平面ABD1,AD1⊂平面ABD1,∴BC⊥AD1,又CD1⊥AD1,BC∩CD1=C,∴AD1⊥平面BCD1,又AD1⊂平面ACD1,∴平面ACD1⊥平面BCD1.∴共有3对平面互相垂直.故选B.]二、填空题6.(2017·黄山模拟)已知正六棱锥SABCDEF的底面边长和高均为1,则异面直线SC与DE所成角的大小为________.[设正六边形ABCDEF的中心为O,连接SO,CO,BO,则由正六边形的性质知OC∥DE,SO⊥平面ABCDEF,所以∠SCO为异面直线SC与DE所成角.又易知△BOC为等边三角形,所以SO=BC=CO=1,所以∠SCO=.]7.在三棱锥CABD中(如图107),△ABD与△CBD是全等的等腰直角三角形,O是斜边BD的中点,AB=4,二面角ABDC的大小为60°,并给出下面结论:①AC⊥BD;②AD⊥CO;③△AOC为正三角形;④cos∠ADC=;⑤四面体ABCD的外接球表面积为32π.其中真命题是________(填序号).图107①③⑤[由题意知BD⊥CO,BD⊥AO,则BD⊥平面AOC,从而BD⊥AC,故①正确;根据二面角ABDC的大小为60°,可得∠AOC=60°,又直线AD在平面AOC的射影为AO,从而AD与CO不垂直,故②错误;根据∠AOC=60°,AO=CO可得△AOC为正三角形,故③正确;在△ADC中,AD=CD=4,AC=CO=2,由余弦定理得cos∠ADC==,故④错误;由题意知,四面体ABCD的外接球的球心为O,半径为2,则外接球的表面积为S=4π×(2)2=32π,故⑤正确.]8.正方体ABCDA1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是________.(填序号)①AC⊥BE;②B1E∥平面ABCD;③三棱锥EABC的体积为定值;④直线B1E⊥直线BC1.①②③...