第2讲函数的单调性与最性1.函数f(x)=在()A.(-∞,1)∪(1,+∞)上是增函数B.(-∞,1)∪(1,+∞)上是减函数C.(-∞,1)和(1,+∞)上是增函数D.(-∞,1)和(1,+∞)上是减函数解析:选C.函数f(x)的定义域为{x|x≠1}.f(x)==-1,根据函数y=-的单调性及有关性质,可知f(x)在(-∞,1)和(1,+∞)上是增函数.2.已知函数f(x)为R上的减函数,则满足f1,即0<|x|<1,所以00C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0解析:选B.因为函数f(x)=log2x+在(1,+∞)上为增函数,且f(2)=0,所以当x1∈(1,2)时,f(x1)f(2)=0,即f(x1)<0,f(x2)>0.6.(2019·湖北八校联考(一))设函数f(x)=在区间[3,4]上的最大值和最小值分别为M,m,则=________.解析:易知f(x)==2+,所以f(x)在区间[3,4]上单调递减,所以M=f(3)=2+=6,m1=f(4)=2+=4,所以==.答案:7.函数f(x)=|x-1|+x2的值域为________.解析:因为f(x)=|x-1|+x2=,所以f(x)=,作出函数图象如图,由图象知f(x)=|x-1|+x2的值域为.答案:8.设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是________.解析:由题意知g(x)=函数图象如图所示,其递减区间是[0,1).答案:[0,1)9.已知函数f(x)=-(a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(x)在上的值域是,求a的值.解:(1)证明:任取x1>x2>0,则f(x1)-f(x2)=--+=,因为x1>x2>0,所以x1-x2>0,x1x2>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以f(x)在(0,+∞)上是增函数.(2)由(1)可知,f(x)在上为增函数,所以f=-2=,f(2)=-=2,解得a=.10.已知函数f(x)=2x-的定义域为(0,1](a为实数).(1)当a=1时,求函数y=f(x)的值域;(2)求函数y=f(x)在区间(0,1]上的最大值及最小值,并求出当函数f(x)取得最值时x的值.解:(1)当a=1时,f(x)=2x-,任取1≥x1>x2>0,则f(x1)-f(x2)=2(x1-x2)-=(x1-x2).因为1≥x1>x2>0,所以x1-x2>0,x1x2>0.所以f(x1)>f(x2),所以f(x)在(0,1]上单调递增,无最小值,当x=1时取得最大值1,所以f(x)的值域为2(-∞,1].(2)当a≥0时,y=f(x)在(0,1]上单调递增,无最小值,当x=1时取得最大值2-a;当a<0时,f(x)=2x+,当≥1,即a∈(-∞,-2]时,y=f(x)在(0,1]上单调递减,无最大值,当x=1时取得最小值2-a;当<1,即a∈(-2,0)时,y=f(x)在上单调递减,在上单调递增,无最大值,当x=时取得最小值2.1.已知函数f(x)=对于任意的x1≠x2,都有(x1-x2)[f(x2)-f(x1)]>0成立,则实数a的取值范围是()A.(-∞,3]B.(-∞,3)C.(3,+∞)D.[1,3)解析:选D.由(x1-x2)[f(x2)-f(x1)]>0,得(x1-x2)·[f(x1)-f(x2)]<0,所以函数f(x)为R上的单调递减函数,则解得1≤a<3.故选D.2.用...