随机事件的概率易错点分析随机事件的概率概念多、且不易弄清它们之间的关系,学生在学习中经常遇到困难,下面就学生在解题时出现的错误分析如下,供大家参考.一、不理解频率的意义例1若在同等条件下进行n次重复试验,得到某个事件A发生的频率为,则随着n的逐渐增大,有()A与某个常数越来越接近B与某个常数的差逐渐减小C与某个常数的差的绝对值差逐渐减小D的图象趋于稳定错解A、B、C分析由频率与概率的关系知:对于给定的事件A,由于事件A发生的频率随着试验次数的增加稳定于概率,因此可以用频率来估计概率.故A、B、C都是错误的.正解D二、应用能力差例2有下列事件:(1)足球运动员点球命中;(2)在自然数集合中任取一个数为偶数;(3)在标准大气压下,水在时沸腾;(4)已知A={1,2,3},B={3,4},则BA;(5)当α≠β时,sinα≠sinβ;(6)光线在均匀媒质中发生折射现象;(7)任意两个奇数之和为奇数.问:上述事件中为随机事件的有______________________,为必然事件的有______________,不可能事件的有_________________.错解随机事件有(1)、(2)、(6);必然事件有(3)、(5);不可能事件有(4)、(7).分析(1)足球运动员罚点球可能命中,也可能不命中;(2)在自然数集合中任取一个数可能为奇数也可能为偶数;(3)在标准大气压下,水在时一定沸腾;(4)已知A={1,2,3},B={3,4},则BA是不可能的;(5)当α≠β时,如果α=,β=,则sinα≠sinβ;如果α=,β=,则sinα=sinβ;(6)光线在均匀媒质中是沿直线传播的,不可能发生折射现象;(7)任意两个奇数之和为偶数正解随机事件有(1)、(2)、(5);必然事件有(3);不可能事件有(4)、(6)、(7).三、未弄清互斥事件与对立事件的关系例3判断下列命题的真假:(1)将一枚硬币抛掷两次,设事件A:“两次都出现正面”,事件B:“两次都出现反面”.则事件A与B是对立事件;(2)在5件产品中有2件是次品,从中任取2件.事件A:“所取2件中最多有1件是次品”,事件B:“所取2件中至少有1用心爱心专心件是次品”.则事件A与B是互斥事件;(3)若事件A与B是互斥事件,则P(A+B)=P(A)+P(B).错解命题(1)、(2)、(3)都是真命题.分析(1)错因是概念不清,将互斥事件与对立事件不加区别.因为事件A与B是对立事件还要满足A∪B是必然事件,显然这是错误的;(2)错因是未弄清“最多”、“至少”的意义,因为它们都包括“所取2件中有1件是次品”,当然事件A与B就不是互斥事件了;(3)是概率的加法公式,当然是正确的.正解(1)是假命题;(2)是假命题;(3)是真命题.四、未弄清对立事件的性质例4设条件甲:“事件A与事件B是对立事件”,结论乙:“P(A)+P(B)=1”.则甲是乙的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件错解C.分析若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1.设掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A)=,P(B)=,满足P(A)+P(B)=1,但A、B不是对立事件.正解A.五、主观臆断例5同时掷两枚骰子,问:(1)“两点的和等于7”的事件与“两点的和等于8”的事件,哪一个发生的机会多?(2)最容易出现的和的点数是多少?并求出它的概率.错解(1)∵每次掷骰子的可能结果有6种,∴“两点的和等于7”的事件与“两点的和等于8”的事件,发生的机会相同;(2)出现的和的点数相同,概率为.分析错因是将掷一个骰子出现的6种结果与掷二个骰子出现两点和的事件当做一回事处理.正解设掷二个骰子,一个出现x点,另一个出现y点,和x+y,如下表:123456123456723456783456789456789105678910116789101112(1)从表中可得出:“两点的和等于7”的事件有6个,“两点的和等于8”的事件有5个,∴前者比后者容易出现.(2)从表中比较得,最容易出现的和是7,它的概率是.用心爱心专心xX+yy