专题15椭圆、双曲线、抛物线圆锥曲线的定义及标准方程名称椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a>|F1F2|)||PF1|-|PF2||=2a(0<2a<|F1F2|)|PF|=|PM|点F不在直线l上,PM⊥l于M标准方程+=1(a>b>0)-=1(a>0,b>0)y2=2px(p>0)图形(1)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,过F2的直线l交椭圆C于A,B两点.若△AF1B的周长为4,则椭圆C的方程为()A.+=1B.+y2=1C.+=1D.+=1(2)(2019·沈阳质量检测(一))已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,点M与双曲线C的焦点不重合,点M关于F1,F2的对称点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|-|BN|=12,则a=()A.3B.4C.5D.6(3)(2017·高考全国卷Ⅱ)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为()A.B.2C.2D.3【答案】(1)A(2)A(3)C【解析】(1)由椭圆的定义知△AF1B的周长为4a=4,所以a=.由e===,得c=1,所以b2=a2-c2=2.所以椭圆C的方程为+=1.故选A.(2)如图,设MN的中点为P.因为F1为MA的中点,F2为MB的中点,所以|AN|=2|PF1|,|BN|=2|PF2|,又|AN|-|BN|=12,所以|PF1|-|PF2|=6=2a,所以a=3.故选A.若已知条件涉及圆锥曲线上的点与焦点的连线段长度问题,首先考虑用定义求解,这样会使问题简捷、快速得到解答.【对点训练】1已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【答案】D.【解析】法一:由题可知,双曲线的右焦点为F(2,0),当x=2时,代入双曲线C的方程,得4-=1,解得y=±3,不妨取点P(2,3),因为点A(1,3),所以AP∥x轴,又PF⊥x轴,所以AP⊥PF,所以S△APF=|PF|·|AP|=×3×1=.故选D.法二:由题可知,双曲线的右焦点为F(2,0),当x=2时,代入双曲线C的方程,得4-=1,解得y=±3,不妨取点P(2,3),因为点A(1,3),所以AP=(1,0),PF=(0,-3),所以AP·PF=0,所以AP⊥PF,所以S△APF=|PF|·|AP|=×3×1=.故选D.2.已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=____________.答案:6解析:法一:依题意,抛物线C:y2=8x的焦点F(2,0),准线x=-2,因为M是C上一点,FM的延长线交y轴于点N,M为FN的中点,设M(a,b)(b>0),所以a=1,b=2,所以N(0,4),|FN|==6.法二:依题意,抛物线C:y2=8x的焦点F(2,0),准线x=-2,因为M是C上一点,FM的延长线交y轴于点N,M为FN的中点,则点M的横坐标为1,所以|MF|=1-(-2)=3,|FN|=2|MF|=6.圆锥曲线的几何性质1.椭圆、双曲线中,a,b,c之间的关系(1)在椭圆中:a2=b2+c2,离心率为e==;(2)在双曲线中:c2=a2+b2,离心率为e==.2.双曲线-=1(a>0,b>0)的渐近线方程为y=±x.注意离心率e与渐近线的斜率的关系.(1)设A、B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)(2)(2019·湖南五市十校联考)已知F1,F2分别是双曲线E:-=1(a>0,b>0)的左、右焦点,过点F1且与x轴垂直的直线与双曲线左支交于点M,N,已知△MF2N是等腰直角三角形,则双曲线的离心率是()A.B.2C.1+D.2+【答案】(1)A(2)C【解析】(1)依题意得,或,所以或,解得01,所以e=1+,故选C.圆锥曲线性质的应用(1)分析圆锥曲线中a,b,c,e各量之间的关系是求解问题的关键.(2)确定椭圆和双曲线的离心率的值及范围,其关键就是确立一个关于a,b,c的方程(组)或不等式(组),再根据a,b,c的关系消掉b得到a,c的关系式.建立关于a,b,c的方程(组)或不等式(组),要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.[注]求椭圆、双曲线的离心率,常利用方程思想及整体代入法,该思想及方法利用待定系数法求方程时经常用到.故所求的抛物线方程为y2=4x或y2=-36x.解决直线与圆锥曲线位置关系问题的步骤...