考点47条件概率与二项的分布【考纲要求】了解条件概率的概念,了解两个事件相互独立的概念;理解n次独立重复试验模型及二项分布,并能解决一些简单问题.【命题规律】条件概率与二项的分布问题在选择题、填空题以及解答题中都会考查,在解答题中出现时难度较大.【典型高考试题变式】(一)二项分布例1.【2017课标II】一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则.【答案】【变式1】已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则p=________.【答案】【解析】由E(X)=np,D(X)=np(1-p),得解得.【变式2】设事件A在每次试验中发生的概率相同,且在三次独立重复试验中,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为________.【答案】【解析】假设事件A在每次试验中发生说明试验成功,设每次试验成功的概率为p,由题意得,事件A发生的次数X~B(3,p),则有1-(1-p)3=,得p=,则事件A恰好发生一次的概率为C××=.(二)条件概率例2.(2014·课标Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6.已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【解析】设“一天的空气质量为优良”为事件A,“连续两天为优良”为事件AB,则已知某天的空气质量为优良,随后一天的空气质量为优良的概率为P(B|A).由条件概率可知,P(B|A)====0.8,故选A.【名师点睛】计算条件概率有两种方法.(1)利用定义P(B|A)=;(2)若n(C)表示试验中事件C包含的基本事件的个数,则P(B|A)=.【变式1】先后掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为x、y,设事件A为“x+y为偶数”,事件B为“x、y中有偶数,且x≠y”,则概率P(B|A)=()A.B.C.D.【答案】B【变式2】甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它是被甲击中的概率为()A.0.45B.0.6C.0.65D.0.75【答案】D【解析】设目标被击中为事件B,目标被甲击中为事件A,则由P(B)=0.6×0.5+0.4×0.5+0.6×0.5=0.8,得P(A|B)====0.75.【数学思想】(1)函数方程思想.(2)转化与化归思想.【温馨提示】(1)条件概率的问题中:①事件A与事件B有时是相互独立事件,有时不是相互独立事件,要弄清P(AB)的求法.②当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A包含的基本事件数n(A),再在事件A发生的条件下求事件B包含的基本事件数,即n(AB),得P(B|A)=.(2)注意二项分布满足的条件:①每次试验中,事件发生的概率是相同的.②各次试验中的事件是相互独立的.③每次试验只有两种结果:事件要么发生,要么不发生.④随机变量是这n次独立重复试验中事件发生的次数.③注意弄清楚超几何分布与二项分布的区别与联系.【典例试题演练】1.(黑龙江省大庆第一中学2014届高三下学期第二阶段考试数学(理)试题)先后掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为x、y,设事件A为“x+y为偶数”,事件B为“x、y中有偶数,且x≠y”,则概率P(B|A)=()A.B.C.D.【答案】B【解析】事件A为“为偶数”所包含的基本事件数有,,,,共18种,事件AB为“x、y中有偶数,且x≠y,x+y为偶数”,所包含的基本事件数有,共6种,由条件概率计算公式可得P(B|A)=.2.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=()A.B.C.D.【答案】B【解析】P(A)==,P(B)==,又A⊇B,则P(AB)=P(B)=,所以P(B|A)===.3.()某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【答案】A4.【2017年第一次全国大联考(新课标卷Ⅱ)】甲、乙、丙、丁四名同学报名参加四项体育比赛,每人限报其中一项,记事件“4名同学所报比赛各不相同...