【红对勾】(新课标)2017高考数学大一轮复习第二章函数、导数及其应用2.5对数与对数函数真题演练文1.(2013·浙江卷)已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx·2lgyC.2lgx·lgy=2lgx+2lgyD.2lg(xy)=2lgx·2lgy解析:2lg(xy)=2lgx+lgy=2lgx·2lgy,故选D.答案:D2.(2012·安徽卷)(log29)×(log34)=()A.B.C.2D.4解析:log29×log34=×=×=4.答案:D3.(2014·四川卷)已知f(x)=ln(1+x)-ln(1-x),x∈(-1,1).现有下列命题:①f(-x)=-f(x);②f=2f(x);③|f(x)|≥2|x|.其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②解析:f(-x)=ln(1-x)-ln(1+x)=-[ln(1+x)-ln(1-x)]=-f(x),①正确.f=ln-ln=ln-ln,∵x∈(-1,1),∴f=2ln(1+x)-2ln(1-x)=2[ln(1+x)-ln(1-x)]=2f(x),②正确.当x∈[0,1)时,|f(x)|=ln(1+x)-ln(1-x)=ln,2|x|=2x,令g(x)=ln-2x,则g′(x)=≥0,∴g(x)在[0,1)上为增函数,∴g(x)≥g(0)=0,即|f(x)|≥2|x|;当x∈(-1,0)时,|f(x)|=ln(1-x)-ln(1+x)=-ln,2|x|=-2x,令h(x)=2x-ln,则h′(x)=<0.∴h(x)在(-1,0)上为减函数,∴h(x)>0,即|f(x)|>2|x|.∴当x∈(-1,1)时,|f(x)|≥2|x|,③正确.答案:A4.(2015·湖南卷)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数解析:方法1:函数f(x)的定义域为(-1,1),任取x∈(-1,1),f(-x)=ln(1-x)-ln(1+x)=-f(x),则f(x)是奇函数.又∵当x∈(0,1)时,f′(x)=+=>0,∴f(x)在(0,1)上是增函数.综上,选A.方法2:同方法1知f(x)是奇函数.当x∈(0,1)时,f(x)=ln=ln=ln.∵y=(x∈(0,1))是增函数,y=lnx也是增函数,∴f(x)在(0,1)上是增函数.综上,选A.方法3:同方法1知f(x)是奇函数.任取x1,x2∈(0,1),且x1
0,(1+x2)(1-x1)>0,∴0<<1,∴f(x1)-f(x2)<0,f(x1)pC.p=rq解析:由题意得p=ln,q=ln,r=(lna+lnb)=ln=p,∵0,∴ln>ln,∴p=r0,且a≠1)的值域是[4,+∞),则实数a的取值范围是________.解析:当x≤2时,f(x)=-x+6,f(x)在(-∞,2]上为减函数,∴f(x)∈[4,+∞).当x>2时,若a∈(0,1),则f(x)=3+logax在(2,+∞)上为减函数,f(x)∈(-∞,3+loga2),显然不满足题意,∴a>1,此时f(x)在(2,+∞)上为增函数,f(x)∈(3+loga2,+∞),由题意可知(3+loga2,+∞)⊆[4,+∞),则3+loga2≥4,即loga2≥1,∴1