2018年高考数学一轮复习第二章函数、导数及其应用第14讲导数与函数的单调性实战演练理1.(2015·全国卷Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是(A)A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)解析:令g(x)=,则g′(x)=,由题意知,当x>0时,g′(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)==0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x∈(1,+∞)时,g(x)<0,从而f(x)<0.又g(-x)====g(x)(x≠0),∴g(x)是偶函数;当x∈(-∞,-1)时,g(x)<0,从而f(x)>0;当x∈(-1,0)时,g(x)>0,从而f(x)<0.综上,所求x的取值范围是(-∞,-1)∪(0,1).2.(2015·福建卷)若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是(C)A.fC.f0,∴g(x)在R上为增函数.∵k>1,∴>0,则g>g(0).而g(0)=f(0)+1=0,∴g=f-+1>0,即f>-1=,所以选项C错误,故选C.3.(2014·新课标全国卷Ⅰ)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是(C)A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)解析:当a=0时,显然f(x)有两个零点,不符合题意.当a≠0时,f′(x)=3ax2-6x,令f′(x)=0,解得x1=0,x2=.当a>0时,>0,所以函数f(x)=ax3-3x2+1在(-∞,0)与上为增函数,在上为减函数,因为f(x)存在唯一零点x0,且x0>0,则f(0)<0,即1<0,不成立.当a<0时,<0,所以函数f(x)=ax3-3x2+1在和(0,+∞)上为减函数,在上为增函数,因为f(x)存在唯一零点x0,且x0>0,则f>0,即a·-3·+1>0,解得a>2或a<-2,又因为a<0,故a的取值范围为(-∞,-2).故选C.4.(2016·四川卷)设函数f(x)=ax2-a-lnx,其中a∈R.讨论f(x)的单调性.解析:由题意,f′(x)=2ax-=,x>0.①当a≤0时,2ax2-1≤0,f′(x)≤0,f(x)在(0,+∞)上单调递减.②当a>0时,f′(x)=,当x∈时,f′(x)<0;当x∈时,f′(x)>0.故f(x)在上单调递减,在上单调递增.12