考点集训(三十二)第32讲简单递推数列1.在数列{an}中,若a1=1,且an+am=an+m(n,m∈N*),则an=A.nB.2nC.n2D.n32.已知数列{an}的前n项和为Sn,且Sn=2an-1(n∈N*),则a5=A.-16B.16C.31D.323.已知数列满足an+1=,若a1=,则a2017=A.B.2C.-1D.14.在数列{an}中,若a1=1,an=·an+1,则an=____________.5.已知a1=,an+1=an+(n∈N*),则an=____________.6.已知数列与满足a1+2a2+…+nan=n(n+1)bn,n∈N*.(1)若a1=1,a2=2,求b1,b2;(2)若an=,求证:bn>.7.已知数列{an}的前n项和为Sn,且满足a1=,an+2SnSn-1=0(n≥2,n∈N*).(1)问:数列是否为等差数列?并证明你的结论;(2)求Sn和an;8.数列{an}满足a1=1,a2=2,an+2=2an+1-an+2.(1)设bn=an+1-an,证明{bn}是等差数列;(2)求{an}的通项公式.第32讲简单递推数列【考点集训】1.A2.B3.A4.5.6.【解析】(1)当n=1时,有a1=2b1=1,所以b1=.当n=2时,有a1+2a2=(2×3)b2.因为a1=1,a2=2,所以b2=.(2)因为an=,所以nan=n·=n+1.所以a1+2a2+…+nan=2+3+…+(n+1)==n(n+1)bn.所以bn=·=>.7.【解析】(1)由已知有S1=a1=,=2,当n≥2时,an=Sn-Sn-1=-2SnSn-1,所以-=2,即是以2为首项,2为公差的等差数列.(2)由(1)得=2+(n-1)·2=2n,Sn=,当n≥2时,an=-2SnSn-1=-.当n=1时,a1=,不满足此式.所以an=8.【解析】(1)由an+2=2an+1-an+2得an+2-an+1=an+1-an+2,即bn+1=bn+2.又b1=a2-a1=1,所以{bn}是首项为1,公差为2的等差数列.(2)由(1)得bn=1+2(n-1)=2n-1,即an+1-an=2n-1.于是(2k-1),所以an+1-a1=n2,即an+1=n2+a1.又a1=1,所以{an}的通项公式为an=n2-2n+2.