一、选择题1.下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.an=n2-n+1B.an=C.an=D.an=2.已知数列{an}满足a1=1,an+1=an+2n,则a10=()A.1024B.1023C.2048D.20473.已知数列{an}的通项公式an=n+(n∈N*),则数列{an}的最小项是()A.a12B.a13C.a12或a13D.不存在4.(2011·广州模拟)已知数列{an}满足a1=2,an+1=(n∈N*),则a1·a2·a3·…·a2011的值为()A.-3B.1C.2D.35.(2011·佛山模拟)数列{an}满足an+an+1=(n∈N*),a2=2,Sn是数列{an}的前n项和,则S21为()A.5B.C.D.二、填空题6.已知数列{an}对于任意p,q∈N*,有ap+aq=ap+q,若a1=,则a36=________.7.(2011·苏州模拟)已知数列{an}的前n项和为Sn,对任意n∈N*都有Sn=an-,且1<Sk<9(k∈N*),则a1的值为________,k的值为________.8.已知数列{an}前n项和为Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),则S15+S22-S31=________.三、解答题9.已知数列{an}的前n项和为Sn,若S1=1,S2=2,且Sn+1-3Sn+2Sn-1=0(N∈N*且n≥2),求该数列的通项公式.10.(2011·淄博模拟)已知数列{an}满足a1=1,a2=-13,an+2-2an+1+an=2n-6.(1)设bn=an+1-an,求数列{bn}的通项公式.(2)求n为何值时an最小.11.已知Sn为正项数列{an}的前n项和,且满足Sn=a+an(n∈N*).(1)求a1,a2,a3,a4的值;(2)求数列{an}的通项公式.用心爱心专心1答案及解析1.【解】观察所给图案知,an=1+2+3+…+n=.【答案】C2.【解】∵an+1=an+2n,∴an-an-1=2n-1(n≥2),∴a10=(a10-a9)+(a9-a8)+…+(a2-a1)+a1=29+28+…+2+1=210-1=1023.【答案】B3.【解】函数y=x+在(0,)上单调递减,在[,+∞)上单调递增,又12<<13.且a12=a13=25,故选C.【答案】C4.【解】a1=2,a2==-3,a3==-,a4==,a5==2,…故4是数列{an}的周期,a1·a2·a3·…·a2011===3.【答案】D5.【解】∵an+an+1=(n∈N*),∴a1=-a2=-2,a2=2,a3=-2,a4=2,…,故a2n=2,a2n-1=-2.∴S21=10×+a1=5+-2=.【答案】B6.【解】∵ap+q=ap+aq,∴a36=a32+a4=2a16+a4=4a8+a4=8a4+a4=18a2=36a1=4.【答案】47.【解】当n=1时,a1=a1-,∴a1=-1.当n≥2时,an=Sn-Sn-1=an--(an-1-)用心爱心专心2=an-an-1,∴=-2,∴数列{an}是首项为-1,公比为-2的等比数列,∴an=-(-2)n-1,Sn=-×(-2)n-1-.由1<-×(-2)k-1-<9得-14<(-2)k-1<-2,又k∈N*,∴k=4.【答案】-148.【解】由已知得S15=-4×7+a15=-28+57=29,S22=-4×11=-44,S31=-4×15+a31=-4×15+121=61,∴S15+S22-S31=29-44-61=-76.【答案】-769.【解】由S1=1得a1=1,又由S2=2可知a2=1.∵Sn+1-3Sn+2Sn-1=0(n∈N*且n≥2),∴Sn+1-Sn-2Sn+2Sn-1=0(n∈N*且n≥2),即(Sn+1-Sn)-2(Sn-Sn-1)=0(n∈N*且n≥2),∴an+1=2an(n∈N*且n≥2),故数列{an}从第2项起是以2为公比的等比数列.∴数列{an}的通项公式为an=10.【解】(1)由an+2-2an+1+an=2n-6,得(an+2-an+1)-(an+1-an)=2n-6,∴bn+1-bn=2n-6.当n≥2时,bn-bn-1=2(n-1)-6,bn-1-bn-2=2(n-2)-6,……b3-b2=2×2-6,b2-b1=2×1-6,累加得bn-b1=2(1+2+…+n-1)-6(n-1)=n(n-1)-6n+6=n2-7n+6.又b1=a2-a1=-14,∴bn=n2-7n-8(n≥2),n=1时,b1也适合此式,故bn=n2-7n-8.(2)由bn=(n-8)(n+1),得an+1-an=(n-8)(n+1).∴当n<8时,an+1<an.当n=8时,a9=a8,当n>8时,an+1>an,故当n=8或n=9时an的值最小.11.【解】(1)由Sn=a+an(n∈N*)可得a1=a+a1,解得a1=1;S2=a1+a2=a+a2,解得a2=2;同理,a3=3,a4=4.(2)Sn=+a,①当n≥2时,Sn-1=+a,②用心爱心专心3①-②即得(an-an-1-1)(an+an-1)=0.由于an+an-1≠0,所以an-an-1=1,又由(1)知a1=1,故数列{an}为首项为1,公差为1的等差数列,故an=n.用心爱心专心4