【创新方案】2017届高考数学一轮复习第八章立体几何第三节直线、平面平行的判定与性质课后作业理一、选择题1.已知直线l和平面α,若l∥α,P∈α,则过点P且平行于l的直线()A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,一定在平面α内D.有无数条,不一定在平面α内2.已知直线a和平面α,那么a∥α的一个充分条件是()A.存在一条直线b,a∥b且b⊂αB.存在一条直线b,a⊥b且b⊥αC.存在一个平面β,a⊂β且α∥βD.存在一个平面β,a∥β且α∥β3.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.若m∥α,n∥α,则m∥nB.若m∥n,n⊂α,则m∥αC.若m∥α,m∥β,则α∥βD.若α∥β,α∥γ,则β∥γ4.(2016·海淀模拟)设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m,其中正确命题的个数是()A.1B.2C.3D.45.(2016·惠州模拟)设直线l,m,平面α,β,则下列条件能推出α∥β的是()A.l⊂α,m⊂α,且l∥β,m∥βB.l⊂α,m⊂β,且l∥mC.l⊥α,m⊥β,且l∥mD.l∥α,m∥β,且l∥m二、填空题6.如图,已知三个平面α,β,γ互相平行,a,b是异面直线,a与α,β,γ分别交于A,B,C三点,b与α,β,γ分别交于D,E,F三点,连接AF交平面β于G,连接CD交平面β于H,则四边形BGEH必为________.7.如图,四棱锥PABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面1ABCD,E为PC的中点,则BE与平面PAD的位置关系为________.8.在正四棱柱ABCDA1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.三、解答题9.如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.(1)求证:BE∥平面DMF;(2)求证:平面BDE∥平面MNG.10.如图,四棱锥PABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.1.设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①②B.②③C.①③D.①②③2.空间四边形ABCD的两条对棱AC、BD的长分别为5和4,则平行于两条对棱的截面四边形EFGH在平移过程中,周长的取值范围是________.3.如图,矩形ABCD中,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻转过程中,正确的命题是________.2①|BM|是定值;②点M在圆上运动;③一定存在某个位置,使DE⊥A1C;④一定存在某个位置,使MB∥平面A1DE.4.(2016·石家庄模拟)如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,E为PD的中点,F在AD上,且∠FCD=30°.(1)求证:CE∥平面PAB;(2)若PA=2AB=2,求四面体PACE的体积.5.如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点.求证:DM∥平面BEC.答案一、选择题1.解析:选B过直线外一点作该直线的平行直线有且只有一条,因为点P在平面α内,所以这条直线也应该在平面α内.2.解析:选C在A,B,D中,均有可能a⊂α,错误;在C中,两平面平行,则其中一个平面内的任一条直线都平行于另一平面,故C正确.33.解析:选D借助正方体模型逐一判断.如图所示,正方体的棱A1B1,B1C1都与底面ABCD平行,但这两条棱相交,故A不正确;在正方体中AB∥A1B1,A1B1⊂平面A1B1BA,而AB在平面A1B1BA内,故B不正确;正方体的棱B1C1既平行于平面ADD1A1,又平行于平面ABCD,但这两个平面相交,故C不正确;由平面与平面平行的传递性可知D正确.4.解析:选B①正确;②中也可能...