贵州省坪东中学09-10学年高三上学期期中考试数学2009-11-22一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合要求的.1.如果一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为()A.45B.23C.22D.212.如果一个空间几何体的正视图与侧视图均为等边三角形,俯视图为一个半径为3的圆及其圆心,那么这个几何体的体积为()高考资源网A.3B.3C.33D.393.函数10axxayx的图象的大致形状是A.B.C.D.4.设xf是定义在R上的正值函数,且满足xfxfxf11.若xf是周期函数,则它的一个周期是()A.3B.2C.6D.45.函数11ln)(xxxf的零点的个数是()A.0个B.1个C.2个D.3个6.设变量x、y满足约束条件yxzxyyxxy2,63,2,则目标函数的最大值为()A.2B.3C.4D.97.已知函数sin()yAxB的一部分图象如图所示,如果0,0,2A,则()A.4AB.1用心爱心专心4Oxy25126xooxyo1-1oxyo1-1ooxyo1-1ooxyo1-1ooC.6D.4B8.已知大于1的实数m、n满足lg2m+lgmlgn-2lg2n=0,则函数)(xmfy与函数)(xnfy的图象关系是()A.关于原点对称B.关于y轴对称C.关于直线x=m对称D.关于直线2mx对称9.设2:5,:()ln21xpmqfxexxmx在(0,)上单调递增,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.已知函数12)(2xxxf,若存在实数t,当mx,1时,xtxf)(恒成立,则实数m的最大值是()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,满分20分.11.若数列{na}满足),(111为常数dNndaann,则数列{na}为“调和数列”,已知数列{nx1}为“调和数列”,且200x2021xx,则183xx的最大值是_______.12.若随机变量服从正态分布2,3N,23,则随机变量的期望是______.www.ks5u.com13.已知函数)(xfy是以2为周期的偶函数,且当)1,0(x时,,1)(2xxf)27(f则的值_______.14.若直线ay2与函数)10(1aaayx且的图象有两个公共点,则a的取值范围是_______.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分)已知集合A=Rxxxx,0322,集合B=RmRxmxmx,,22(1)若]3,0[BA,求实数m的值;(2)若BCAR,求实数m的取值范围。用心爱心专心~16.(本小题满分12分)设F1、F2分别是椭圆1422yx的左、右焦点.(1)若P是该椭圆上的一个动点,求21PFPF的最大值和最小值;(2)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.高考资源网17.(本小题满分14分)某公司生产的品牌服装年固定成本为10万元,每生产1千件,需另投入1.9万元,设)(xR(单位:万元)为销售收入,根据市场调查,)10(3200)100(30110)(3xxxxxR,其中x是年产量(单位:千件)(1)写出利润W与年产量x的函数解析式(2)年产量为多少时,该公司在这一品牌服装的生产中获利最大?18.(本小题满分14分)已知函数)(ln)(2Raxaxxf(1)当1a时,求函数f(x)在点x=1处的切线方程及)(xf的单调区间;(2)求函数f(x)的极值;用心爱心专心19.(本小题满分14分)设函数Ncbcbxaxxf,2.若方程xxf的根为0和2,且212f.(1).求函数xf的解析式;(2)已知各项均不为零的数列na满足:nnnSafS(114为该数列的前n项和),求该数列的通项na;(3)如果数列na满足nnafaa11,4.求证:当2n时,恒有3na成立.20.(本小题满分14分)已知二次函数cbxaxxf2)((1)若cba且0)1(f,证明:0a且)(xf的图象与x轴有两个不同的交点;(2)在(1)的条件下,是否存在Rm,使amf)(成立时,)3(mf为正数?若存在,证明你的结论;若不存在,说明理由。用心爱心专心贵州省坪东中学09-10学年高三上学期期中考试数学答案一、选择题1-5BDDCC6-10DCABA二、填空...