考点51随机抽样与样本估计总体【考纲要求】1.随机抽样(1)理解随机抽样的必要性和重要性;(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点;(2)理解样本数据标准差的意义和作用,会计算数据标准差;(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释;(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想;(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.【命题规律】分析近几年的高考试题不难知本部分在高考中一般为一个小题或者在解答题与其它的概率问题相结合考查;常常考查抽样方式的判断,其中系统抽样与分层抽样是考查重点;利用样本估计商品化中,特别应重视频率分布真方图和茎叶图的应用,另外常见的数字特征的求法也是高考命题点,预计2018年高考对本部分的考查着重考查以下几个方面:(1)分层抽样中各层抽取样本个数的确定;(2)对样本频率分布真方图、茎叶图的理解和应用.【典型高考试题变式】(一)简单随机抽样例1【2013年江西】总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493482003623486969387481A.08B.07C.02D.01【答案】D【变式1】【改变了总体个数与样本个数及随机数表的选取的开始号】福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为()A.12B.33C.06D.16【答案】C【解析】第1行第9列和第10列的数字为63,所以选择的数为17,12,33,06,32,22,10,第四个数为06,故选C.【变式2】【改变了随机数表的排列方式及与概率交汇】天气预报显示,在今后的三天中,每一天下雨的概率为40%,现用随机模拟的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0--9之间整数值的随机数,并制定用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数907966191925271932812458569683431257393027556488730113537989则这三天中恰有两天下雨的概率近似为()A.B.C.D.【答案】B【解析】阅读随机数表可知,满足题意的数据为:,据此可知:这三天中恰有两天下雨的概率近似为,故选B.(二)系统抽样例1【2013年陕西卷】某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11B.12C.13D.14【答案】B【方法技巧归纳】(1)系统抽样又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码;(2)系统抽样时,如果总体中的个数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行.【变式1】【变求在某一区间内的抽取的个体数为求确定在第1段抽取的初始号】用系统抽样法(按等距离的规则)从160名学生中抽取容量为20的样本,将这160名学生从1到160编号.按编号顺序平均分成20段(1~8号,9~16号,…,153~160号),若第16段应抽出的号码为125,则第1段中用简单随机抽样确定的号码是()A.7B.5C.4D.3【答案】B【解析】用系统抽样知,每段中有8人,第16段应为从121到128这8个号码,125是其中的第5个号码,所以第一段中被确定的号码是5,故选B.【变式2】【变求某区间内的抽取的个数为确定系统抽样每个个体被抽取的概率】从2007名学生中选取50名参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7...