姓名:贾俊雅学科:数学学校:开发区实验中学课程名称:《生活中的旋转》教材版本:北师大版年级:八年级教学分析:学生在七年级下学期已经学习了“生活中的轴对称”一节,而且在本章的第一节,学生又经历了探索图形平移性质的过程,已经积累了图形变换的数学活动经验,同时八年级学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也在迅速发展,他们有强烈的独立思考、自主探索的愿望,这些对本节的学习都会有帮助。但旋转是三种变换中难度较大的一种,图形也比较复杂,因此,学生对旋转图形的形成过程的理解仍会有一定的困难。教学目标:知识与能力:通过具体事例认识旋转,理解旋转的性质.过程与方法:经历对生活中与旋转现象有关的图形进行观察、分析、欣赏等过程,发展初步的审美能力,增强对图形欣赏的意识.情感态度价值观:引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学.重点:类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.难点:探索旋转的性质,特别是,对应点到旋转中心的距离相等.开发区实验中学贾俊雅旋转的定义旋转的性质生活中的应用练习反馈课堂小结(1)上面情景中的转动现象,有什么共同的特征?(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动称为平移.在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转平移不改变图形的大小和形状。旋转不改变图形的大小和形状。这个定点称为旋转中心,转动的角称为旋转角。旋转角旋转中心在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。AoB如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是什么?(2)经过旋转,点A、B分别移动到什么位置?(3)旋转角是什么?(4)∠AOD与∠BOE有什么大小关系?(5)AO与DO的长有什么关系?BO与EO呢?议一议旋转中心是O点D和点E的位置AO=DO,BO=EO∠AOD=∠BOE∠AOD和∠BOE都是旋转角(4)对应点到旋转中心的距离相等.旋转的基本性质(1)旋转不改变图形的大小和形状.(2)图形上的每一点都绕旋转中心沿相同方向转动了相同的角度(3)任意一对对应点与旋转中心的连线所成的角度都是旋转角.例1:钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了多少度?(2)分针匀速旋转一周需要60分,因此经过20分,分针旋转的角度为1202060360解:(1)它的旋转中心是钟表的轴心;可以看作是一个花瓣连续4次旋转所形成的,每次旋转分别等于720,1440,2160,2880思考题:香港区徽可以看作是什么“基本图案”通过怎样的旋转而得到的?P80随堂练习:本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度?也可以看做是二个相邻菱形通过几次旋转得到的?每次旋转了多少度?还可以看做是几个菱形通过几次旋转得到的?每次旋转了多少度?3个1次18002次1200,24005次600,1200,1800,2400,30003个1次600P79做一做:在图中,正方形ABCD与正方形EFGH边长相等,这个图案可以看作是哪个“基本图案”通过旋转得到的.试一试图中是否存在这样的两个三角形,其中一个是通过另一个旋转得到的?课堂回顾:这节课,主要学习了什么?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转旋转的概念:旋转的性质:1、旋转不改变图形的大小和形状.2、任意一对对应点与旋转中心的连线所成的角度都是旋转角,旋转角相等.3、对应点到旋转中心的距离相等自转