有关概念:1.事件A与B至少有一个发生的事件叫做A与B的和事件,记为(或);ABAB3.若为不可能事件,则说事件A与B互斥.AB复习引入:2.事件A与B都发生的事件叫做A与B的积事件,记为(或);ABAB随机事件的概率有加法公式:()()()PABPAPB若事件A与B互斥,则:你能算吗?五一假期你妈妈带你到她的一个朋友家做客,闲谈间正巧碰到她的女儿回家,这时主人介绍说:“这是我的一个女儿,我还有一个孩子呢。”这个家庭中有两个孩子,已知其中有一个是女孩,问这时另一个孩子也是女孩的概率为多大?问题该家庭中有两个孩子,已知其中有一个是女孩,问另一个小孩也是女孩的概率为多大?解{(,),(,),(,),(,)}男男男女女男女女(,),(,),(,)A={已知一个是女孩}={男女女男女女}{}{(,)}B另一个也是女孩女女1.3所以所求概率为问题该家庭中有两个孩子,已知老大是女孩,问另一个小孩也是女孩的概率为多大?解{(,),(,),(,),(,)}男男男女女男女女(,),(,),(,)A={已知一个是女孩}={男女女男女女}{}{(,)}B另一个也是女孩女女(,),(,)={已知老大是女孩}={女男女女A}1.2所以所求概率为思考:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学中奖的概率是否比其他同学小?13学抽到中奖奖券”表示事件“最后一名同不妨设B12没有抽到中奖奖券”表示事件“第一名同学不妨设A则”的事件表示为一名同学抽到中奖奖券后中奖奖券的情况下,最“在第一名同学没抽到,AB条件概率对任意事件A和事件B,在已知事件A发生的条件下事件B发生的条件概率”,叫做条件概率。记作P(B|A).基本概念分析:求P(B|A)的一般思想因为已经知道事件A必然发生,所以只需在A发生的范围内考虑问题,即现在的样本空间为A。因为在事件A发生的情况下事件B发生,等价于事件A和事件B同时发生,即AB发生。故其条件概率为()(|)()nABPBAnA为了把条件概率推广到一般情形,不妨记原来的样本空间为,则有()/()()(|)()/()()nABnPABPBAnAnPA条件概率计算公式:注:⑴0(|)PBA≤≤1;⑵几何解释:BA()()()PABPBAPA概率P(B|A)与P(AB)的区别与联系联系:事件A,B都发生了区别:样本空间不同:在P(B|A)中,事件A成为样本空间;在P(AB)中,样本空间仍为。在某次外交谈判中,中外双方都为了自身的利益而互不相让,这时对方有个外交官提议以抛掷一颗骰子决定,若已知出现点数不超过3的条件下再出现点数为奇数则按对方的决议处理,否则按中方的决议处理,假如你在现场,你会如何抉择?B={出现的点数是奇数}={1,3,5}设A={出现的点数不超过3}={1,2,3}只需求事件A发生的条件下,事件B的概率即P(B|A)()2(|)()3nABPBAnAB5A2134,6解法一(减缩样本空间法)例题1解1:在某次外交谈判中,中外双方都为了自身的利益而互不相让,这时对方有个外交官提议以抛掷一颗骰子决定,若已知出现点数不超过3的条件下再出现点数为奇数则按对方的决议处理,否则按中方的决议处理,假如你在现场,你会如何抉择?B={出现的点数是奇数}={1,3,5}设A={出现的点数不超过3}={1,2,3}只需求事件A发生的条件下,事件B的概率即P(B|A)B5A2134,6例题1解2:由条件概率定义得:()(|)()pABPBApA123132解法二(条件概率定义法)例2、在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;解:设第1次抽到理科题为事件A,第2次抽到理科题为事件B,则第1次和第2次都抽到理科题为事件AB.(1)从5道题中不放回地依次抽取2道的事件数为25()20nA1134()12nAAA根据分步乘法计数原理,()123()()205nAPAn例2、在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;232()6nABA()()63()()2010nABPABn解:设第1次抽到理科题为事件A,第2次抽到理科题为事件B,则第1次和第2次都抽到理科题为事件AB.例2、在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽...