【大高考】2017版高考数学一轮总复习第8章立体几何初步第4节直线、平面平行的判定与性质高考AB卷理空间中平行的判定与性质1.(2016·全国Ⅲ,19)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.(1)证明由已知得AM=AD=2.取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.又AD∥BC,故TN綉AM,四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)解取BC的中点E,连接AE.由AB=AC得AE⊥BC,从而AE⊥AD,AE===.以A为坐标原点,AE的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.由题意知,P(0,0,4),M(0,2,0),C(,2,0),N,PM=(0,2,-4),PN=,AN=.设n=(x,y,z)为平面PMN的法向量,则即可取n=(0,2,1).于是cos〈n,AN〉==.设AN与平面PMN所成的角为θ,则sinθ=,∴直线AN与平面PMN所成的角的正弦值为.2.(2014·全国Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.(1)证明连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)解因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB的方向为x轴的正方向,|AP|为单位长,建立空间直角坐标系A-xyz,则D(0,,0),E,AE=.设B(m,0,0)(m>0),则C(m,,0),AC=(m,,0).设n1=(x,y,z)为平面ACE的法向量,则即可取n1=.又n2=(1,0,0)为平面DAE的法向量,由题设知|cos〈n1,n2〉|=,即=,解得m=.因为E为PD的中点,所以三棱锥E-ACD的高为,三棱锥E-ACD的体积V=××××=.3.(2013·全国Ⅱ,18)如图,在直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(1)证明:BC1∥平面A1CD;(2)求二面角D-A1C-E的正弦值.(1)证明连接AC1交A1C于点F,则F为AC1的中点.又D是AB的中点,连接DF,则BC1∥DF.因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(2)解由AC=CB=AB得,AC⊥BC.以C为坐标原点,CA的方向为x轴正方向,CB的方向为y轴正方向,CC1的方向为z轴正方向,建立如图所示的空间直角坐标系C-xyz.设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2).CD=(1,1,0),CE=(0,2,1),CA1=(2,0,2).设n=(x1,y1,z1)是平面A1CD的法向量,则即可取n=(1,-1,-1).同理,设m=(x2,y2,z2)是平面A1CE的法向量,则即可取m=(2,1,-2).从而cos〈n,m〉==,故sin〈n,m〉=.即二面角D-A1C-E的正弦值为.空间中平行的判定与性质1.(2013·广东,6)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β解析A项中,m与n还可能平行或异面,故不正确;B项中,m与n还可能异面,故不正确;C项中,α与β还可能平行或相交,故不正确;D项中, m⊥α,m∥n,∴n⊥α.又n∥β,∴α⊥β,故选D.答案D2.(2012·四川,6)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行解析若两条直线和同一平面所成的角相等,则这两条直线可平行、可异面、可相交.选项A错;如果到一个平面距离相等的三个点在同一条直线上或在这个平面的两侧,则经过这三个点的平面与这个平面相交,选项B不正确;如图,平面α∩β=b,a∥α,a∥β,过直线a作平面ε∩α=c,过直线a作平面γ∩β=d, a∥α,∴a∥c, a∥β,∴a∥d,∴d∥c, c⊂α,d⊄α,∴d∥α,又 d⊂β,∴d∥b,∴a∥b,选项C正确;若两个平面都垂直于第三个平面...