浙江省富阳市场口中学高三数学椭圆的几何性质复习练习2一、选择题1.(2014·浙江绍兴一模)椭圆+=1上一点M到焦点F1的距离为2,N是MF1的中点,则|ON|等于()A.2B.4C.8D.2.已知椭圆+=1(a>b>0)的两顶点为A(a,0),B(0,b),且左焦点为F,△FAB是以角B为直角的直角三角形,则椭圆的离心率e为()A.B.C.D.3.(2013·新课标全国卷Ⅱ)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.4.(2014·汕尾模拟)已知P为椭圆+=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5B.7C.13D.155.(2014·衡水模拟)设椭圆+=1(a>b>0)的离心率e=,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)()A.必在圆x2+y2=2内B.必在圆x2+y2=2上C.必在圆x2+y2=2外D.以上三种情形都有可能6.椭圆+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则|PF2|=()A.B.C.D.47.(2014·嘉兴模拟)已知椭圆x2+my2=1的离心率e∈,则实数m的取值范围是()A.B.C.∪D.∪8.(2013·新课标全国卷Ⅱ)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.二、填空题9.(2013·福建高考)椭圆Γ:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于________.10.设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为________.11.(2014·乌鲁木齐第一次诊断)如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则此椭圆的离心率的取值范围是。12.(2014年陕西五校联考)椭圆+=1(a为定值,且a>)的左焦点为F,直线x=m与椭圆相交于点A、B.若△FAB的周长的最大值是12,则该椭圆的离心率是________.13.已知点A(0,2)及椭圆+y2=1上任意一点P,则|PA|的最大值为________.三、解答题14.(2014·宁波模拟)已知椭圆C:+=1(a>b>0)的四个顶点恰好是边长为2,一内角为60°的菱形的四个顶点.(1)求椭圆C的方程;(2)若直线y=kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得△PAB为等边三角形,求k的值.115.已知椭圆C:+=1(a>b>0)的一个焦点是F(1,0),且离心率为.(1)求椭圆C的方程;(2)设经过点F的直线交椭圆C于M,N两点,线段MN的垂直平分线交y轴于点P(0,y0),求y0的取值范围.216.(本题15分)已知椭圆上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且,点M的轨迹为C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点且平行于轴的直线上一动点,满足(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由3