课时跟踪训练(四十四)直线、平面垂直的判定与性质[基础巩固]一、选择题1.(2017·湖北七市高三联考)设直线m与平面α相交但不垂直,则下列说法中正确的是()A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不可能与平面α平行D.与直线m平行的平面不可能与平面α垂直[解析]对于A,在平面α内可能有无数条直线与直线m垂直,这些直线是互相平行的,A错误;对于B,只要m⊄α,过直线m必有并且也只有一个平面与平面α垂直,B正确;对于C,类似于A,在平面α外可能有无数条直线垂直于直线m并且平行于平面α,C错误;对于D,与直线m平行且与平面α垂直的平面有无数个,D错误.故选B.[答案]B2.(2016·浙江卷)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n[解析]对于选项A, α∩β=l,∴l⊂α, m∥α,∴m与l可能平行,也可能异面,故选项A不正确;对于选项B,D, α⊥β,m∥α,n⊥β,∴m与n可能平行,可能相交,也可能异面,故选项B,D不正确.对于选项C, α∩β=l,∴l⊂β. n⊥β,∴n⊥l.故选C.[答案]C3.(2018·湖南长沙模拟)已知α,β,γ为平面,l是直线,若α∩β=l,则“α⊥γ,β⊥γ”是“l⊥γ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[解析]由α⊥γ,β⊥γ,α∩β=l可以推出l⊥γ;反过来,若l⊥γ,α∩β=l,则根据面面垂直的判定定理,可知α⊥γ,β⊥γ.所以若α∩β=l,则“α⊥γ,β⊥γ”是“l⊥γ”的充要条件.[答案]C4.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么()1A.PA=PB>PCB.PA=PB