电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学大一轮复习 第十三章 推理与证明、算法、复数 13.3 数学归纳法试题 理 北师大版-北师大版高三全册数学试题VIP免费

高考数学大一轮复习 第十三章 推理与证明、算法、复数 13.3 数学归纳法试题 理 北师大版-北师大版高三全册数学试题_第1页
1/13
高考数学大一轮复习 第十三章 推理与证明、算法、复数 13.3 数学归纳法试题 理 北师大版-北师大版高三全册数学试题_第2页
2/13
高考数学大一轮复习 第十三章 推理与证明、算法、复数 13.3 数学归纳法试题 理 北师大版-北师大版高三全册数学试题_第3页
3/13
第十三章推理与证明、算法、复数13.3数学归纳法试题理北师大版数学归纳法数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是:(1)验证:当n取第一个值n0(如n0=1或2等)时,命题成立;(2)在假设当n=k(k∈N+,k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立.根据(1)(2)可以断定命题对一切从n0开始的正整数n都成立.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)用数学归纳法证明问题时,第一步是验证当n=1时结论成立.(×)(2)所有与正整数有关的数学命题都必须用数学归纳法证明.(×)(3)用数学归纳法证明问题时,归纳假设可以不用.(×)(4)不论是等式还是不等式,用数学归纳法证明时,由n=k到n=k+1时,项数都增加了一项.(×)(5)用数学归纳法证明等式“1+2+22+…+2n+2=2n+3-1”,验证n=1时,左边式子应为1+2+22+23.(√)(6)用数学归纳法证明凸n边形的内角和公式时,n0=3.(√)1.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N+),在验证n=1时,等式左边的项是()A.1B.1+aC.1+a+a2D.1+a+a2+a3答案C解析当n=1时,n+1=2,∴左边=1+a1+a2=1+a+a2.2.(2016·黄山模拟)已知n为正偶数,用数学归纳法证明1-+-+…-=2(++…+)时,若已假设n=k(k≥2且k为偶数)时命题为真,则还需要用归纳假设再证()A.n=k+1时等式成立B.n=k+2时等式成立C.n=2k+2时等式成立D.n=2(k+2)时等式成立答案B解析因为n为正偶数,n=k时等式成立,即n为第k个偶数时命题成立,所以需假设n为下一个偶数,即n=k+2时等式成立.3.在应用数学归纳法证明凸n边形的对角线为n(n-3)条时,第一步检验n等于()A.1B.2C.3D.0答案C解析凸n边形边数最小时是三角形,故第一步检验n=3.4.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上()A.k2+1B.(k+1)2C.D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案D解析等式左边是从1开始的连续自然数的和,直到n2.故n=k+1时,最后一项是(k+1)2,而n=k时,最后一项是k2,应加上(k2+1)+(k2+2)+(k2+3)+…+(k+1)2.5.(教材改编)已知{an}满足an+1=a-nan+1,n∈N+,且a1=2,则a2=________,a3=________,a4=________,猜想an=________.答案345n+1题型一用数学归纳法证明等式例1设f(n)=1+++…+(n∈N+).求证:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N+).证明①当n=2时,左边=f(1)=1,右边=2(1+-1)=1,左边=右边,等式成立.②假设n=k(k≥2,k∈N+)时,结论成立,即f(1)+f(2)+…+f(k-1)=k[f(k)-1],那么,当n=k+1时,f(1)+f(2)+…+f(k-1)+f(k)=k[f(k)-1]+f(k)=(k+1)f(k)-k=(k+1)[f(k+1)-]-k=(k+1)f(k+1)-(k+1)=(k+1)[f(k+1)-1],∴当n=k+1时结论成立.由①②可知当n∈N+时,f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N+).思维升华用数学归纳法证明恒等式应注意(1)明确初始值n0的取值并验证n=n0时等式成立.(2)由n=k证明n=k+1时,弄清左边增加的项,且明确变形目标.(3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.用数学归纳法证明:++…+=(n∈N+).证明①当n=1时,左边==,右边==,左边=右边,等式成立.②假设n=k(k≥1,k∈N+)时,等式成立.即++…+=,则当n=k+1时,左边=++…++=+===,右边==,左边=右边,等式成立.即对所有n∈N+,原式都成立.题型二用数学归纳法证明不等式例2(2016·烟台模拟)等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图像上.(1)求r的值;(2)当b=2时,记bn=2(log2an+1)(n∈N+),证明:对任意的n∈N+,不等式··…·>成立.(1)解由题意,Sn=bn+r,当n≥2时,Sn-1=bn-1+r.所以an=Sn-Sn-1=bn-1(b-1).由于b>0且b≠1,所以n≥2时,{an}是以b为公比的等比数列.又a1=b+r,a2=b(b-1),所以=b,即=b,解得r=-1.(2)证明由(1)及b=2知an=2n-1.因此bn=2n(n∈N+),所证不等式为··...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学大一轮复习 第十三章 推理与证明、算法、复数 13.3 数学归纳法试题 理 北师大版-北师大版高三全册数学试题

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部