电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第8章 立体几何 37 直线、平面平行的判定与性质课时训练 文(含解析)-人教版高三全册数学试题VIP免费

高考数学一轮复习 第8章 立体几何 37 直线、平面平行的判定与性质课时训练 文(含解析)-人教版高三全册数学试题_第1页
1/7
高考数学一轮复习 第8章 立体几何 37 直线、平面平行的判定与性质课时训练 文(含解析)-人教版高三全册数学试题_第2页
2/7
高考数学一轮复习 第8章 立体几何 37 直线、平面平行的判定与性质课时训练 文(含解析)-人教版高三全册数学试题_第3页
3/7
【课时训练】直线、平面平行的判定与性质一、选择题1.(2018保定中学1月月考)有下列命题:①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是()A.1B.2C.3D.4【答案】A【解析】命题①:l可以在平面α内,不正确;命题②:直线a与平面α可以是相交关系,不正确;命题③:a可以在平面α内,不正确;命题④正确.故选A.2.(2018滨州模拟)已知m,n,l1,l2表示直线,α,β表示平面.若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是()A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l2D.m∥l1且n∥l2【答案】D【解析】由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D可推知α∥β.故选D.3.(2018台州模拟)设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.若α⊥γ,β⊥γ,则α∥βB.若m⊥n,m⊥α,n∥β,则α∥βC.若m⊥α,m⊥β,则α∥βD.若m∥n,m∥α,n∥β,则α∥β【答案】C【解析】垂直于同一直线的两平面平行,故选C.4.(2018合肥模拟)在空间四边形ABCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶2,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在平面内D.不能确定【答案】A【解析】如图,由=,得AC∥EF.又因为EF⊂平面DEF,AC⊄平面DEF,所以AC∥平面DEF.5.(2018唐山模拟)若m,n表示不同的直线,α,β表示不同的平面,则下列结论中正确的是()1A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α⊥β,m∥α,n∥β,则m∥nD.若α∥β,m∥α,n∥m,n⊄β,则n∥β【答案】D【解析】在A中,若m∥α,m∥n,则n∥α或n⊂α,故A错误.在B中,若m⊂α,n⊂β,m∥β,n∥α,则α与β相交或平行,故B错误.在C中,若α⊥β,m∥α,n∥β,则m与n相交、平行或异面,故C错误.在D中,若α∥β,m∥α,n∥m,n⊄β,则由线面平行的判定定理,得n∥β,故D正确.6.(2018山东济南模拟)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能【答案】B【解析】在三棱柱ABC-A1B1C1中,AB∥A1B1. AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC. 过A1B1的平面与平面ABC交于DE,∴DE∥A1B1.∴DE∥AB.二、填空题7.(2018河北石家庄质检)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊂α,n∥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若α∩β=n,m∥n,m∥α,则m∥β;④若α⊥γ,β⊥γ,则α∥β.其中是真命题的是________(填上序号).【答案】②【解析】①,m∥n或m,n异面,故①错误;易知②正确;③,m∥β或m⊂β,故③错误;④,α∥β或α与β相交,故④错误.8.(2018衡水模拟)如图,在四面体ABCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.2【答案】平面ABC,平面ABD【解析】如图,连接AM并延长交CD于点E,则E为CD的中点.由于N为△BCD的重心,连接BE,所以B,N,E三点共线,且==.所以MN∥AB.于是MN∥平面ABD且MN∥平面ABC.9.(2018北京海淀区模拟)在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H,D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.【答案】【解析】如图,取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF綊AC綊DE,所以四边形DEFH为平行四边形.又AC⊥SB,SB∥HD,DE∥AC,所以DE⊥HD.所以四边形DEFH为矩形,其面积S=HF·HD=·=.310.(2018江西六校联考)如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E,F分别是棱BC...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第8章 立体几何 37 直线、平面平行的判定与性质课时训练 文(含解析)-人教版高三全册数学试题

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部