电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

山东省济宁市高考数学一轮复习 第三讲 直线与圆锥曲线的综合问题习题 理 新人教A版-新人教A版高三全册数学试题VIP免费

山东省济宁市高考数学一轮复习 第三讲 直线与圆锥曲线的综合问题习题 理 新人教A版-新人教A版高三全册数学试题_第1页
1/5
山东省济宁市高考数学一轮复习 第三讲 直线与圆锥曲线的综合问题习题 理 新人教A版-新人教A版高三全册数学试题_第2页
2/5
山东省济宁市高考数学一轮复习 第三讲 直线与圆锥曲线的综合问题习题 理 新人教A版-新人教A版高三全册数学试题_第3页
3/5
第三讲直线与圆锥曲线的综合问题1.(2013安徽)已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为________.解析:本题考查直线与抛物线的位置关系,圆的性质,考查考生的转化与化归能力.法一:设直线y=a与y轴交于点M,抛物线y=x2上要存在C点,只要以|AB|为直径的圆与抛物线y=x2有交点即可,也就是使|AM|≤|MO|,即≤a(a>0),所以a≥1.法二:易知a>0,设C(m,m2),由已知可令A(,a),B(-,a),则=(m-,m2-a),=(m+,m2-a),因为⊥,所以m2-a+m4-2am2+a2=0,可得(m2-a)(m2+1-a)=0.因为由题易知m2≠a,所以m2=a-1≥0,故a∈[1,+∞).答案:[1,+∞)2.(2013浙江)设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点.若|FQ|=2,则直线l的斜率等于________.解析:本题考查抛物线方程、性质,直线与抛物线的位置关系,考查数形结合思想及运算求解能力.法一:注意到|FQ|=2,正好是抛物线通径的一半,所以点Q为通径的一个端点,其坐标为(1,±2),这时A,B,Q三点重合,直线l的斜率为±1.法二:令直线l的方程为x=ty-1,由得y2-4ty+4=0,设A(x1,y1),B(x2,y2),则y1+y2=4t,y1y2=4,x1+x2=4t2-2,所以xQ=2t2-1,yQ=2t,|FQ|2=(xQ-1)2+y=4,代入解得,t=±1或t=0(舍去),即直线l的斜率为±1.答案:±13.(2012辽宁)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为()A.1B.3C.-4D.-8解析:因为P,Q两点的横坐标分别为4,-2,且P,Q两点都在抛物线y=x2上,所以P(4,8),Q(-2,2).因为y′=x,所以kPA=4,kQA=-2,则直线PA,QA的方程联立得,即,可得A点坐标为(1,-4).答案:C4.(2012北京)在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60°,则△OAF的面积为________.解析:直线l的方程为y=(x-1),即x=y+1,代入抛物线方程得y2-y-4=0,解得yA==2(yB<0,舍去),故△OAF的面积为×1×2=.答案:5.(2009·宁夏、海南)已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A、B两点.若AB的中点为(2,2),则直线l的方程为________.解析:抛物线C的顶点在坐标原点,焦点为F(1,0),∴=1,抛物线方程为y2=4x.设A(x1,y1),B(x2,y2),则y1+y2=4,y=4x1①y=4x2②①-②得y-y=4(x1-x2),∴(y1+y2)(y1-y2)=4(x1-x2),∴=1,∴直线l的斜率为1,且过点(2,2),∴直线方程为y-2=x-2,∴x-y=0.1答案:x-y=06.[2014·北京卷]已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.解:(1)由题意,椭圆C的标准方程为+=1.所以a2=4,b2=2,从而c2=a2-b2=2.因此a=2,c=.故椭圆C的离心率e==.(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x0≠0.因为OA⊥OB,所以OA·OB=0,即tx0+2y0=0,解得t=-.又x+2y=4,所以|AB|2=(x0-t)2+(y0-2)2=+(y0-2)2=x+y++4=x+++4=++4(0<x≤4).因为+≥4(0<x≤4),当x=4时等号成立,所以|AB|2≥8.故线段AB长度的最小值为2.7.[2014·广东卷]已知椭圆C:+=1(a>b>0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.28.(2009·辽宁,12分)已知,椭圆C经过点A(1,),两个焦点为(-1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.解:(1)由题意,c=1,可设椭圆方程为+=1.因为A在椭圆上,所以+=1,解得b2=3,b2=-(舍去).所以椭圆方程为+=1.(2)设直线AE方程为y=k(x-1)+,代入+=1,得(3+4k2)x2+4k(3-2k)x+4(-k)2-12=0.设E(xE,yE),F(xF,yF).因为点A(1,)在椭圆上,所以xE=,yE=kxE+-k.又直线AF的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

山东省济宁市高考数学一轮复习 第三讲 直线与圆锥曲线的综合问题习题 理 新人教A版-新人教A版高三全册数学试题

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部