考点05函数的单调性与最值1.设函数在上为增函数,则下列结论一定正确的是()A.在上为减函数B.在上为增函数C.在上为减函数D.在上为增函数【答案】C2.已知定义在上的函数(为实数)为偶函数,记,,,则、、的大小关系为()A.B.C.D.【答案】D【解析】由函数为偶函数,可知,即,显然在上单调递增,又∴故选:D.3.若定义在R上的函数f(x)满足f(0)=-1,其导函数f'(x)满足f'(x)>k>1,则下列结论中一定错误的是()A.fB.fC.fD.f【答案】C4.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f'(x),f'(x)≤0的解集为{x|-2≤x≤3}.若f(x)的极小值等于-115,则a的值是()A.-B.C.2D.5【答案】C【解析】依题意得f'(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,则b=-,c=-18a.函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,则-a=-81,解得a=2.故选C.5.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=.【答案】1-ln2【解析】对函数y=lnx+2求导,得y'=,对函数y=ln(x+1)求导,得y'=设直线y=kx+b与曲线y=lnx+2相切于点P1(x1,y1),与曲线y=ln(x+1)相切于点P2(x2,y2),则y1=lnx1+2,y2=ln(x2+1).由点P1(x1,y1)在切线上,得y-(lnx1+2)=(x-x1),由点P2(x2,y2)在切线上,得y-ln(x2+1)=(x-x2).因为这两条直线表示同一条直线,所以解得x1=,所以k==2,b=lnx1+2-1=1-ln2.6.已知函数,当时,关于的不等式的解集为__________.【答案】【解析】当时,是上的增函数,且,所以可以转化为,结合函数的单调性,可以将不等式转化为,解得,从而得答案为.7.设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.【答案】见解析从而g(x)>0,x∈(-∞,+∞).综上可知,f'(x)>0,x∈(-∞,+∞).故f(x)的单调递增区间为(-∞,+∞).8.设a>1,函数f(x)=(1+x2)ex-a.(1)求f(x)的单调区间;(2)证明:f(x)在区间(-∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m≤-1.【答案】见解析9.已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.【答案】(1)(-1,a)(2)(3)10.定义在上的函数满足,,,且当时,,则__________.【答案】【解析】由题意,时,,得,又时,,得,因为,由题意可知,。11.将2006表示成5个正整数之和.记.问:(1)当取何值时,S取到最大值;(2)进一步地,对任意有,当取何值时,S取到最小值.说明理由.【答案】(1)见解析;(2)见解析12.已知函数f(x)=lnx-ax2+x,a∈R.(1)若f(1)=0,求函数f(x)的单调递减区间;(2)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值;(3)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,求证:x1+x2≥.【答案】(1)(1,+∞)(2)2(3)见解析因为h=ln2->0,h(1)=-<0,所以