专题02命题及其关系、充分条件与必要条件1.理解命题的概念2.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系3.理解充分条件、必要条件与充要条件的含义热点题型一四种命题及其真假判断例1、【2017山东,理3】已知命题p:;命题q:若a>b,则,下列命题为真命题的是(A)(B)(C)(D)【答案】B【提分秘籍】在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系。要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可。对涉及数学概念的命题的判定要从概念本身入手。【举一反三】已知:命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是()A.否命题是“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”,是真命题解析:由f(x)=ex-mx在(0,+∞)上是增函数,则f′(x)=ex-m≥0恒成立,∴m≤1。∴命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”是真命题。答案:D热点题型二充分条件、必要条件的判断例2、【2017天津,理4】设,则“”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【答案】【解析】,但,不满足,所以是充分不必要条件,选A.【提分秘籍】充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断。(2)集合法:根据p,q成立的对应的集合之间的包含关系进行判断。(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断。这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的何种条件,即可转化为判断“x=1且y=1”是“xy=1”的何种条件。【举一反三】设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:当x=2且y=-1时,满足方程x+y-1=0,但方程x+y-1=0有无数多个解,不能确定x=2且y=-1,∴“x=2且y=-1”是“点P在直线l上”的充分而不必要条件。答案:A热点题型三充分条件、必要条件的应用例3.已知集合M={x|x<-3或x>5},P={x|(x-a)·(x-8)≤0}。(1)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件;(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件;(3)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的一个必要但不充分条件。解析:(1)由M∩P={x|5<x≤8},得-3≤a≤5,因此M∩P={x|5<x≤8}的充要条件是{a|-3≤a≤5};(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件,就是在集合{a|-3≤a≤5}中取一个值,如取a=0,此时必有M∩P={x|5<x≤8};反之,M∩P={x|5<x≤8}未必有a=0,故a=0是所求的一个充分不必要条件;(3)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的一个必要不充分条件就是另求一个集合Q,使{a|-3≤a≤5}是集合Q的一个真子集.如果{a|a≤5}时,未必有M∩P={x|5<x≤8},但是M∩P={x|5<x≤8}时,必有a≤5,故{a|a≤5}是所求的一个必要不充分条件。【提分秘籍】与充要条件有关的参数问题的求解方法解决此类问题一般是根据条件把问题转化为集合之间的关系,并由此列出关于参数的不等式(组)求解。【举一反三】原命题为“若<an,n∈N+,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,真,真B.假,假,真C.真,真,假D.假,假,假1.【2017天津,理4】设,则“”是“”的(A)充分而不必要条件(B)必要而不充分条件(...