河南省南阳市新野三中2014-2015学年高一上学期10月月考数学试卷一、选择题(本大题共12小题,每小题5分,共60分,每小题有且只有一个正确答案)1.(5分)若P={x|x<1},Q={x|x>1},则()A.P⊆QB.Q⊆PC.∁RP⊆QD.Q⊆∁RP2.(5分)已知全集U={0,1,2,3,5,6,8},集合A={1,5,8},B={2},则集合(∁UA)∪B=()A.{0,2,3,6}B.{0,3,6}C.{1,2,5,8}D.∅3.(5分)下列各组中的两个函数是同一函数的是()A.f(x)=(x﹣1)0与g(x)=1B.f(x)=x与g(x)=C.f(x)=与g(x)=D.f(x)=与g(t)=()24.(5分)给定映射f:(x,y)→(x+2y,2x﹣y),在映射f下(3,1)的原象为()A.(1,3)B.(3,1)C.(1,1)D.5.(5分)已知函数f(x)=,若f(a)+f(1)=0,则实数a的值等于()A.3B.1C.﹣1D.﹣36.(5分)设集合M={x|x2+2x﹣a=0},若M非空,则实数a的取值范围是()A.a≤﹣1B.a≥﹣1C.a≤1D.a≥17.(5分)设集合A={x|0≤x≤2},B={y|1≤y≤2},在下图中能表示从集合A到集合B的映射的是()A.B.C.D.18.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D.9.(5分)函数的图象是()A.B.C.D.10.(5分)函数y=在区间(0,+∞)上是增函数,则实数m的取值范围是()A.m>B.m≥C.m<D.m≤11.(5分)若函数为奇函数,则a=()A.B.C.D.112.(5分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是x=1.给出下列四个结论:①ac>0;②b>0;③b2﹣4ac>0;④2a+b=0.其中正确结论的个数是()A.0B.1C.2D.3二、填空题(每小题5分,共20分)13.(5分)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=.14.(5分)已知集合M={m|∈N+,m∈N),则用列举法表示集合M=.215.(5分)函数的定义域为.16.(5分)已知函数y=f(x)的定义域为R,且对任意的正数d,都有f(x+d)<f(x),则满足f(1﹣a)<f(a﹣1)的a的取值范围为.三、计算题(共70分)17.(10分)求下列函数的解析式:(1)已知f(x+1)=x2﹣3x+2,求f(x);(2)已知f(1+)=x﹣2﹣1,求f(x).18.(12分)设全集U=R,A={x∈R|a≤x≤2},B={x∈R|2x+1≤x+3,且3x≥2}.(1)若B⊆A,求实数a的取值范围;(2)若a=1,求:A∪B,(∁UA)∩B.19.(12分)证明函数f(x)=x+在(﹣1,0)上是减少的.20.(12分)已知函数f(x)=x2+2ax+2,x∈,(1)当a=1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间上是单调函数.21.(12分)已知函数.(1)在如图给定的直角坐标系内画出f(x)的图象;(2)写出f(x)的单调递增区间及值域;(3)求不等式f(x)>1的解集.322.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(I)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;(Ⅱ)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂单价﹣成本)河南省南阳市新野三中2014-2015学年高一上学期10月月考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,每小题有且只有一个正确答案)1.(5分)若P={x|x<1},Q={x|x>1},则()A.P⊆QB.Q⊆PC.∁RP⊆QD.Q⊆∁RP考点:集合的包含关系判断及应用.专题:集合.分析:利用集合的补集的定义求出P的补集;利用子集的定义判断出Q⊆CRP.解答:解: P={x|x<1},∴CRP={x|x≥1}, Q={x|x>1},∴Q⊆CRP,故选D.点评:本题考查利用集合的交集、补集、并集定义求交集、补集、并集;利用集合包含关系的定义判断集合的包含关系.2.(5分)已知全集U={0,1,2,3,5,6,8},集合A={1,5,8},B={2},则集合(∁UA)∪B=()A.{0,2,3,6}B.{0,3,6}C.{1,2,5,8}D.∅考点:交、并、补集的混合运算.专题:计算题.分析:由全集U...