题组层级快练(二十二)1.cos2015°=()A.sin35°B.-sin35°C.sin55°D.-sin55°答案D解析cos2015°=cos(5×360°+215°)=cos215°=cos(270°-55°)=-sin55°.2.tan240°+sin(-420°)的值为()A.-B.-C.D.答案C3.已知f(cosx)=cos2x,则f(sin15°)的值等于()A.B.-C.D.-答案D解析f(sin15°)=f(cos75°)=cos150°=-.故选D.4.已知A=+(k∈Z),则A的值构成的集合是()A.{1,-1,2,-2}B.{-1,1}C.{2,-2}D.{1,-1,0,2,-2}答案C解析当k为偶数时,A=+=2;当k为奇数时,A=-=-2.5.(tanx+)cos2x=()A.tanxB.sinxC.cosxD.答案D解析(tanx+)cos2x=·cos2x==.6.若tan(5π+α)=m,则的值为()A.B.C.-1D.1答案A解析由tan(5π+α)=m,得tanα=m.原式===,∴选A.7.若A为△ABC的内角,且sin2A=-,则cos(A+)等于()A.B.-C.D.-答案B解析cos2(A+)=[(cosA-sinA)]2=(1-sin2A)=.又cosA<0,sinA>0,∴cosA-sinA<0.∴cos(A+)=-.8.若3sinα+cosα=0,则的值为()A.B.C.D.-2答案A解析由3sinα=-cosα,得tanα=-.====.9.若tanθ+=4,则sin2θ=()A.B.C.D.答案D解析∵tanθ+=4,∴+=4.∴=4,即=4.∴sin2θ=.10.(2015·河北唐山模拟)已知sinα+cosα=,则tanα=()A.B.C.-D.-答案A解析∵sinα+cosα=,∴(sinα+cosα)2=3.∴sin2α+2sinαcosα+2cos2α=3.∴=3.∴=3.∴2tan2α-2tanα+1=0.∴tanα=,故选A.11.已知tanθ=2,则sin2θ+sinθcosθ-2cos2θ=()A.-B.C.-D.答案D解析sin2θ+sinθcosθ-2cos2θ====.12.已知2tanα·sinα=3,-<α<0,则cos(α-)的值是()A.0B.C.1D.答案A解析依题意得=3,即2cos2α+3cosα-2=0,解得cosα=或cosα=-2(舍去).又-<α<0,因此α=-,故cos(α-)=cos(--)=cos=0.13.已知sinθ=,则sin4θ-cos4θ的值为________.答案-解析由sinθ=,可得cos2θ=1-sin2θ=,所以sin4θ-cos4θ=(sin2θ+cos2θ)(sin2θ-cos2θ)=sin2θ-cos2θ=-=-.14.若α∈(0,),且sin2α+cos2α=,则tanα的值等于________.答案解析由二倍角公式可得sin2α+1-2sin2α=,即-sin2α=-,sin2α=.又因为α∈(0,),所以sinα=,即α=,所以tanα=tan=.15.化简sin6α+cos6α+3sin2αcos2α的结果是________.答案1解析sin6α+cos6α+3sin2αcos2α=(sin2α+cos2α)(sin4α-sin2αcos2α+cos4α)+3sin2αcos2α=sin4α+2sin2αcos2α+cos4α=(sin2α+cos2α)2=1.16.若tanα+=3,则sinαcosα=________,tan2α+=________.答案,7解析∵tanα+=3,∴+=3.即=3.∴sinαcosα=.又tan2α+=(tanα+)2-2tanα=9-2=7.17.(2015·浙江嘉兴联考)已知α为钝角,sin(+α)=,则sin(-α)=________,cos(α-)=________.答案-,解析sin(-α)=cos[-(-α)]=cos(+α),∵α为钝角,∴π<+α<π.∴cos(+α)<0.∴cos(+α)=-=-.cos(α-)=sin[+(α-)]=sin(+α)=.18.已知0<α<,若cosα-sinα=-,试求的值.答案-解析∵cosα-sinα=-,∴1-2sinαcosα=.∴2sinαcosα=.∴(sinα+cosα)2=1+2sinαcosα=1+=.∵0<α<,∴sinα+cosα=.与cosα-sinα=-联立,解得cosα=,sinα=.∴tanα=2.∴==-.19.已知-<α<0,且函数f(α)=cos(+α)-sinα·-1.(1)化简f(α);(2)若f(α)=,求sinα·cosα和sinα-cosα的值.答案(1)f(α)=sinα+cosα(2)-,-解析(1)f(α)=sinα-sinα·-1=sinα+sinα·-1=sinα+cosα.(2)方法一:由f(α)=sinα+cosα=,平方可得sin2α+2sinα·cosα+cos2α=,即2sinα·cosα=-.∴sinα·cosα=-.∵(sinα-cosα)2=1-2sinα·cosα=,又-<α<0,∴sinα<0,cosα>0,∴sinα-cosα<0,∴sinα-cosα=-.方法二:联立方程解得或∵-<α<0,∴∴sinα·cosα=-,sinα-cosα=-.1.已知cosA+sinA=-,A为第四象限角,则tanα等于()A.B.C.-D.-答案C解析∵cosA+sinA=-,①∴(cosA+sinA)2=(-)2,∴2cosA·sinA=-.∴(cosA-sinA)2=(cosA+sinA)2-4cosAsinA.∵A为第四象限角,∴cosA-sinA=.②∴联立①②,∴cosA=,sinA=-.∴tanA==-,选C.2.已知sin(+α)=,则sin(-α)的值为________.答案解析sin(-α)=sin[π-(+α)]=sin(+α)=.