考点48正态分布【考纲要求】利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.【命题规律】在选择题、填空题考查较多,属容易题,分值5分,在解答题中结合其他知识考查属中等题.【典型高考试题变式】正态分布例1.【2017课标1】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得,,其中为抽取的第个零件的尺寸,.用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量服从正态分布,则,,.【分析】(1)根据题设条件知一个零件的尺寸在之内的概率为0.9974,则零件的尺寸在之外的概率为0.0026,而,进而可以求出的数学期望.(2)(i)判断监控生产过程的方法的合理性,重点是考虑一天内抽取的16个零件中,出现尺寸在之外的零件的概率是大还是小,若小即合理;(ii)根据题设条件算出的估计值和的估计值,剔除之外的数据9.22,算出剩下数据的平均数,即为的估计值,剔除之外的数据9.22,剩下数据的样本方差,即为的估计值.【解析】(1)抽取的一个零件的尺寸在之内的概率为0.9974,从而零件的尺寸在之外的概率为0.0026,故.因此.的数学期望为.(2)(i)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的原则.【变式1】某种品牌摄像头的使用寿命ξ(单位:年)服从正态分布,且使用寿命不少于2年的概率为0.8,使用寿命不少于6年的概率为0.2.某校在大门口同时安装了两个该种品牌的摄像头,则在4年内这两个摄像头都能正常工作的概率为________.【答案】【变式2】【广西南宁2017届普通高中毕业班第二次模拟】某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量(单位:千克)与该地当日最低气温(单位:)的数据,如下表:x258911y1210887(1)求出与的回归方程;(2)判断与之间是正相关还是负相关;若该地1月份某天的最低气温为,请用所求回归方程预测该店当日的销售量;(3)设该地1月份的日最低气温~,其中近似为样本平均数,近似为样本方差,求.附:①回归方程中,,.②,,若~,则,.【解析】(1)因为令,,,所以,所以所以(或者:)所以所求的回归方程是【数学思想】①数形结合思想.②转化与化归思想.【温馨提示】①曲线与x轴之间面积为1.正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相同.②P(X≤a)=1-P(X≥a),P(X≤μ-a)=P(X≥μ+a).【典例试题演练】1.【2017云南大理统测】2016年1月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的,则此次统考中成绩不低于120分的学生人数约为()A.80B.100C.120D.200【答案...