第二节同角三角函数基本关系式与诱导公式课时作业A组——基础对点练1.若cosα=,α∈,则tanα等于()A.-B.C.-2D.2解析: α∈,∴sinα=-=-=-,∴tanα==-2.答案:C2.sin(-600°)的值为()A.B.C.1D.解析:sin(-600°)=sin(-720°+120°)=sin120°=.答案:A3.已知sin=,那么cosα=()A.-B.-C.D.解析: sin=sin=cosα,∴cosα=.故选C.答案:C4.已知角α(0°≤α<360°)终边上一点的坐标为(sin235°,cos235°),则α=()A.215°B.225°C.235°D.245°解析:由诱导公式可得sin235°=-sin55°<0,cos235°=-cos55°<0,角α终边上一点的横坐标、纵坐标均为负值,故该点在第三象限,由三角函数定义得sinα=cos235°=-cos55°=sin(270°-55°)=sin215°,又0°≤α<360°,所以角α的值是215°,故选A.答案:A5.已知sinα-cosα=,α∈(0,π),则sin2α=()A.-1B.-C.D.1解析: sinα-cosα=,∴(sinα-cosα)2=1-2sinαcosα=2,∴2sinα·cosα=-1,∴sin2α=-1.故选A.答案:A6.设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>cB.b>c>aC.c>b>aD.c>a>b解析: b=cos55°=sin35°>sin33°=a,∴b>a.又 c=tan35°=>sin35°=cos55°=b,1∴c>b.∴c>b>a.故选C.答案:C7.已知2tanα·sinα=3,-<α<0,则sinα=()A.B.-C.D.-解析:因为2tanα·sinα=3,所以=3,所以2sin2α=3cosα,即2-2cos2α=3cosα,所以cosα=或cosα=-2(舍去),又-<α<0,所以sinα=-.答案:B8.若=,则tanθ=()A.1B.-1C.3D.-3解析:原式可化为=,分子、分母同除以cosθ得=,求得tanθ=-3,故选D.答案:D9.已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,则f(2017)的值为()A.-1B.1C.3D.-3解析: f(4)=asin(4π+α)+bcos(4π+β)=asinα+bcosβ=3,∴f(2017)=asin(2017π+α)+bcos(2017π+β)=asin(π+α)+bcos(π+β)=-asinα-bcosβ=-(asinα+bcosβ)=-3.答案:D10.=________.解析:原式====.答案:11.化简:·sin·cos=__________.解析:·sin·cos=·(-cosα)·(-sinα)=-cos2α.答案:-cos2α12.(2018·西安质检)若角θ满足=3,求tanθ的值.解析:由=3,得=3,等式左边分子分母同时除以cosθ,得=3,解得tanθ=1.B组——能力提升练1.若=2,则cosα-3sinα=()A.-3B.3C.-D.解析: =2,∴cosα=2sinα-1,又sin2α+cos2α=1,∴sin2α+(2sinα-1)2=1⇒5sin2α-4sinα=0⇒sinα=或sinα=0(舍去),∴cosα-3sinα=-sinα-1=-.故选C.答案:C2.已知倾斜角为α的直线l与直线x+2y-3=0垂直,则cos的值为()A.B.-C.2D.-解析:由题意可得tanα=2,2所以cos=-sin2α=-=-=-.故选B.答案:B3.(2018·长沙模拟)若sinθ,cosθ是方程4x2+2mx+m=0的两根,则m的值为()A.1+B.1-C.1±D.-1-解析:由题意知,sinθ+cosθ=-,sinθ·cosθ=. (sinθ+cosθ)2=1+2sinθcosθ,∴=1+,解得m=1±,又Δ=4m2-16m≥0,∴m≤0或m≥4,∴m=1-.答案:B4.已知tanθ=2,则sin2θ+sinθcosθ-2cos2θ=()A.-B.C.-D.解析:sin2θ+sinθcosθ-2cos2θ==,把tanθ=2代入得,原式==.故选D.答案:D5.若θ∈,sinθ·cosθ=,则sinθ=()A.B.C.D.解析: sinθ·cosθ=,∴(sinθ+cosθ)2=1+2sinθ·cosθ=,(sinθ-cosθ)2=1-2sinθcosθ=, θ∈,∴sinθ+cosθ=①,sinθ-cosθ=②,联立①②得,sinθ=.答案:D6.已知倾斜角为θ的直线与直线x-3y+1=0垂直,则=()A.B.-C.D.-解析:直线x-3y+1=0的斜率为,因此与此直线垂直的直线的斜率k=-3,∴tanθ=-3,∴==,把tanθ=-3代入得,原式==.答案:C7.4sin80°-=()A.B.-C.D.2-3解析:4sin80°-====-,故选B.答案:B8.设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,则f=()A.B.C.0D.-解析:由f(x+π)=f(x)+sinx,得f(x+2π)...