限时规范训练概率及其应用限时50分钟,实际用时________分值81分,实际得分________一、选择题(本题共6小题,每小题5分,共30分)1.(2016·高考天津卷)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.解析:选A.事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为+=.2.(2017·山东潍坊模拟)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A.B.C.D.解析:选D.从装有3个红球、2个白球的袋中任取3个球通过列举知共有10个基本事件;所取的3个球中至少有1个白球的反面为“3个球均为红色”,有1个基本事件,所以所取的3个球中至少有1个白球的概率是1-=.3.(2016·高考全国卷Ⅱ)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.B.C.D.解析:选C.如图,数对(xi,yi)(i=1,2,…,n)表示的点落在边长为1的正方形OABC内(包括边界),两数的平方和小于1的数对表示的点落在半径为1的四分之一圆(阴影部分)内,则由几何概型的概率公式可得=⇒π=.故选C.4.(2017·山东威海二模)从集合{1,2,3,4}中随机抽取一个数a,从集合{1,2,3}中随机抽取一个数b,则向量m=(a,b)与向量n=(2,1)共线的概率为()A.B.C.D.解析:选A.由题意可知m=(a,b)有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),共12个, m=(a,b)与向量n=(2,1)共线,∴a-2b=0,即a=2b,有(2,1),(4,2),共2个,故所求概率为.5.圆的任何一对平行切线间的距离总是相等的,即圆在任意方向都有相同的宽度,具有这种性质的曲线可称为“等宽曲线”.事实上存在着大量的非圆等宽曲线,以工艺学家鲁列斯(Reuleaux)命名的鲁列斯曲边三角形,就是著名的非圆等宽曲线.它的画法(如图1):画一个等边三角形ABC,分别以A,B,C为圆心,边长为半径,作圆弧\s\up10(︵),\s\up10(︵),\s\up10(︵),这三段圆弧围成的图形就是鲁列斯曲边三角形.它的宽度等于原来等边三角形的边长.等宽曲线都可以放在边长等于曲线宽度的正方形内(如图2).在图2中的正方形内随机取一点,则这一点落在鲁列斯曲边三角形内的概率为()A.B.C.D.解析:选D.设鲁列斯曲边三角形的宽度为a,则该鲁列斯曲边三角形的面积为3×πa2-2×a2=,所以所求概率P==,故选D.6.(2017·湖南六校联考)从-=1(其中m,n∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为()A.B.C.D.解析:选B.当方程-=1表示椭圆、双曲线、抛物线等圆锥曲线时,不能有m<0,n>0,所以方程-=1表示椭圆、双曲线、抛物线等圆锥曲线的(m,n)有(2,-1),(3,-1),(2,2),(3,2),(2,3),(3,3),(-1,-1),共7种,其中表示焦点在x轴上的双曲线时,则m>0,n>0,有(2,3),(3,2),(2,3),(3,3),共4种,所以所求概率P=.二、填空题(本题共3小题,每小题5分,共15分)7.(2017·山东泰安三模)在区间[-2,3]上任取一个数a,则函数f(x)=x3-ax2+(a+2)x有极值的概率为________.解析:区间[-2,3]的长度为5,f′(x)=x2-2ax+a+2.函数f(x)=x3-ax2+(a+2)x有极值等价于f′(x)=x2-2ax+a+2=0有两个不等实根,即Δ=4a2-4(a+2)>0,解得a<-1或a>2,又 a∈[-2,3],∴-2≤a<-1或2<a≤3,区间范围的长度为2,∴所求概率P=.答案:8.(2017·山东临沂模拟)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为________.解析:根据题目条件知所有的数组(a,b)共有62=36组,而满足条件|a-b|≤1的数组(a,b)有:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),共有16组,根据古典概型的概率公...